976 research outputs found

    Coordinated Multi-Agent Imitation Learning

    Get PDF
    We study the problem of imitation learning from demonstrations of multiple coordinating agents. One key challenge in this setting is that learning a good model of coordination can be difficult, since coordination is often implicit in the demonstrations and must be inferred as a latent variable. We propose a joint approach that simultaneously learns a latent coordination model along with the individual policies. In particular, our method integrates unsupervised structure learning with conventional imitation learning. We illustrate the power of our approach on a difficult problem of learning multiple policies for fine-grained behavior modeling in team sports, where different players occupy different roles in the coordinated team strategy. We show that having a coordination model to infer the roles of players yields substantially improved imitation loss compared to conventional baselines.Comment: International Conference on Machine Learning 201

    Conditionally conjugate mean-field variational Bayes for logistic models

    Full text link
    Variational Bayes (VB) is a common strategy for approximate Bayesian inference, but simple methods are only available for specific classes of models including, in particular, representations having conditionally conjugate constructions within an exponential family. Models with logit components are an apparently notable exception to this class, due to the absence of conjugacy between the logistic likelihood and the Gaussian priors for the coefficients in the linear predictor. To facilitate approximate inference within this widely used class of models, Jaakkola and Jordan (2000) proposed a simple variational approach which relies on a family of tangent quadratic lower bounds of logistic log-likelihoods, thus restoring conjugacy between these approximate bounds and the Gaussian priors. This strategy is still implemented successfully, but less attempts have been made to formally understand the reasons underlying its excellent performance. To cover this key gap, we provide a formal connection between the above bound and a recent P\'olya-gamma data augmentation for logistic regression. Such a result places the computational methods associated with the aforementioned bounds within the framework of variational inference for conditionally conjugate exponential family models, thereby allowing recent advances for this class to be inherited also by the methods relying on Jaakkola and Jordan (2000)

    Bayesian Nonparametric Hidden Semi-Markov Models

    Full text link
    There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markovianity, which has been developed mainly in the parametric frequentist setting, to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference. The methods we introduce also provide new methods for sampling inference in the finite Bayesian HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both synthetic and real experiments

    Solving Algorithmic Problems in Finitely Presented Groups via Machine Learning

    Full text link
    Machine learning and pattern recognition techniques have been successfully applied to algorithmic problems in free groups. In this dissertation, we seek to extend these techniques to finitely presented non-free groups, in particular to polycyclic and metabelian groups that are of interest to non-commutative cryptography. As a prototypical example, we utilize supervised learning methods to construct classifiers that can solve the conjugacy decision problem, i.e., determine whether or not a pair of elements from a specified group are conjugate. The accuracies of classifiers created using decision trees, random forests, and N-tuple neural network models are evaluated for several non-free groups. The very high accuracy of these classifiers suggests an underlying mathematical relationship with respect to conjugacy in the tested groups. In addition to testing these techniques on several well-known finitely presented groups, we introduce a new family of metabelian groups for which we analyze the computational complexity of the conjugacy search problem. We prove that for the family in general the time complexity of the conjugacy search problem is exponential, while for a subfamily the problem is polynomial. We also show that for some of these groups the conjugacy search problem is an instance of the discrete logarithm problem. We also apply machine learning techniques to solving the conjugacy search problem. For each platform group we train a N-tuple regression network that can produce a candidate conjugator for a pair of conjugate elements. This candidate is then used as the initial state of a local search for a conjugator in the Cayley graph, in what we call regression-based conjugacy search (RBCS). RBCS can be applied to groups such as polycyclic groups for which other heuristic approaches, such as the length-based attack, are ineffective

    Cryptanalysis of protocols using (Simultaneous) Conjugacy Search Problem in certain Metabelian Platform Groups

    Full text link
    There are many group-based cryptosystems in which the security relies on the difficulty of solving Conjugacy Search Problem (CSP) and Simultaneous Conjugacy Search Problem (SCSP) in their underlying platform groups. In this paper we give a cryptanalysis of these systems which use certain semidirect product of abelian groups
    • …
    corecore