600 research outputs found

    A Survey of Deep Learning for Data Caching in Edge Network

    Full text link
    The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user demand for popular content can be satisfied by proactively caching it at the network edge, i.e, at close proximity to the users. In addition to model based caching schemes learning-based edge caching optimizations has recently attracted significant attention and the aim hereafter is to capture these recent advances for both model based and data driven techniques in the area of proactive caching. This paper summarizes the utilization of deep learning for data caching in edge network. We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure. Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning. Furthermore, a comparison of state-of-the-art literature is provided from the aspects of caching topics and deep learning methods. Finally, we discuss research challenges and future directions of applying deep learning for cachin

    Learning to Solve Climate Sensor Placement Problems with a Transformer

    Full text link
    The optimal placement of sensors for environmental monitoring and disaster management is a challenging problem due to its NP-hard nature. Traditional methods for sensor placement involve exact, approximation, or heuristic approaches, with the latter being the most widely used. However, heuristic methods are limited by expert intuition and experience. Deep learning (DL) has emerged as a promising approach for generating heuristic algorithms automatically. In this paper, we introduce a novel sensor placement approach focused on learning improvement heuristics using deep reinforcement learning (RL) methods. Our approach leverages an RL formulation for learning improvement heuristics, driven by an actor-critic algorithm for training the policy network. We compare our method with several state-of-the-art approaches by conducting comprehensive experiments, demonstrating the effectiveness and superiority of our proposed approach in producing high-quality solutions. Our work presents a promising direction for applying advanced DL and RL techniques to challenging climate sensor placement problems

    Online Service Migration in Edge Computing with Incomplete Information: A Deep Recurrent Actor-Critic Method

    Get PDF
    Multi-access Edge Computing (MEC) is an emerging computing paradigm that extends cloud computing to the network edge (e.g., base stations, MEC servers) to support resource-intensive applications on mobile devices. As a crucial problem in MEC, service migration needs to decide where to migrate user services for maintaining high Quality-of-Service (QoS), when users roam between MEC servers with limited coverage and capacity. However, finding an optimal migration policy is intractable due to the highly dynamic MEC environment and user mobility. Many existing works make centralized migration decisions based on complete system-level information, which can be time-consuming and suffer from the scalability issue with the rapidly increasing number of mobile users. To address these challenges, we propose a new learning-driven method, namely Deep Recurrent Actor-Critic based service Migration (DRACM), which is user-centric and can make effective online migration decisions given incomplete system-level information. Specifically, the service migration problem is modeled as a Partially Observable Markov Decision Process (POMDP). To solve the POMDP, we design an encoder network that combines a Long Short-Term Memory (LSTM) and an embedding matrix for effective extraction of hidden information. We then propose a tailored off-policy actor-critic algorithm with a clipped surrogate objective for efficient training. Results from extensive experiments based on real-world mobility traces demonstrate that our method consistently outperforms both the heuristic and state-of-the-art learning-driven algorithms, and achieves near-optimal results on various MEC scenarios
    • …
    corecore