4 research outputs found

    Optimal Perturbation Iteration Method for Solving Fractional Model of Damped Burgers’ Equation

    Get PDF
    The newly constructed optimal perturbation iteration procedure with Laplace transform is applied to obtain the new approximate semi-analytical solutions of the fractional type of damped Burgers’ equation. The classical damped Burgers’ equation is remodeled to fractional differential form via the Atangana–Baleanu fractional derivatives described with the help of the Mittag–Leffler function. To display the efficiency of the proposed optimal perturbation iteration technique, an extended example is deeply analyzed.This work was supported in part by the Basque Government, through project IT1207-19

    Existence and Uniqueness of Mild Solutions for the Damped Burgers Equation in Weighted Sobolev Spaces on the Half Line

    Get PDF
    This paper addresses an initial boundary value problem for the damped Burgers equation in weighted Sobolev spaces on half line. First, it introduces two normed spaces and present relations between them, which in turn enables us to analysis the existence and uniqueness of a local mild solution and of a global strong solution in these weighted spaces. The paper also studies the well-posedness of this equation in a semi-infinite interval

    Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics

    Get PDF
    The optimal control of unsteady Burgers equation without constraints and with control constraints are solved using the high-level modelling and simulation package COMSOL Multiphysics. Using the first-order optimality conditions, projection and semi-smooth Newton methods are applied for solving the optimality system. The optimality system is solved numerically using the classical iterative approach by integrating the state equation forward in time and the adjoint equation backward in time using the gradient method and considering the optimality system in the space-time cylinder as an elliptic equation and solving it adaptively. The equivalence of the optimality system to the elliptic partial differential equation (PDE) is shown by transforming the Burgers equation by the Cole-Hopf transformation to a linear diffusion type equation. Numerical results obtained with adaptive and nonadaptive elliptic solvers of COMSOL Multiphysics are presented both for the unconstrained and the control constrained case
    corecore