9,828 research outputs found

    Incentive Stackelberg Mean-payoff Games

    Get PDF
    We introduce and study incentive equilibria for multi-player meanpayoff games. Incentive equilibria generalise well-studied solution concepts such as Nash equilibria and leader equilibria (also known as Stackelberg equilibria). Recall that a strategy profile is a Nash equilibrium if no player can improve his payoff by changing his strategy unilaterally. In the setting of incentive and leader equilibria, there is a distinguished player called the leader who can assign strategies to all other players, referred to as her followers. A strategy profile is a leader strategy profile if no player, except for the leader, can improve his payoff by changing his strategy unilaterally, and a leader equilibrium is a leader strategy profile with a maximal return for the leader. In the proposed case of incentive equilibria, the leader can additionally influence the behaviour of her followers by transferring parts of her payoff to her followers. The ability to incentivise her followers provides the leader with more freedom in selecting strategy profiles, and we show that this can indeed improve the payoff for the leader in such games. The key fundamental result of the paper is the existence of incentive equilibria in mean-payoff games. We further show that the decision problem related to constructing incentive equilibria is NP-complete. On a positive note, we show that, when the number of players is fixed, the complexity of the problem falls in the same class as two-player mean-payoff games. We also present an implementation of the proposed algorithms, and discuss experimental results that demonstrate the feasibility of the analysis of medium sized games.Comment: 15 pages, references, appendix, 5 figure

    Finding Optimal Strategies in a Multi-Period Multi-Leader-Follower Stackelberg Game Using an Evolutionary Algorithm

    Full text link
    Stackelberg games are a classic example of bilevel optimization problems, which are often encountered in game theory and economics. These are complex problems with a hierarchical structure, where one optimization task is nested within the other. Despite a number of studies on handling bilevel optimization problems, these problems still remain a challenging territory, and existing methodologies are able to handle only simple problems with few variables under assumptions of continuity and differentiability. In this paper, we consider a special case of a multi-period multi-leader-follower Stackelberg competition model with non-linear cost and demand functions and discrete production variables. The model has potential applications, for instance in aircraft manufacturing industry, which is an oligopoly where a few giant firms enjoy a tremendous commitment power over the other smaller players. We solve cases with different number of leaders and followers, and show how the entrance or exit of a player affects the profits of the other players. In the presence of various model complexities, we use a computationally intensive nested evolutionary strategy to find an optimal solution for the model. The strategy is evaluated on a test-suite of bilevel problems, and it has been shown that the method is successful in handling difficult bilevel problems.Comment: To be published in Computers and Operations Researc

    Stochastic Stackelberg games

    Full text link
    In this paper, we consider a discrete-time stochastic Stackelberg game where there is a defender (also called leader) who has to defend a target and an attacker (also called follower). Both attacker and defender have conditionally independent private types, conditioned on action and previous state, that evolve as controlled Markov processes. The objective is to compute the stochastic Stackelberg equilibrium of the game where defender commits to a strategy. The attacker's strategy is the best response to the defender strategy and defender's strategy is optimum given the attacker plays the best response. In general, computing such equilibrium involves solving a fixed-point equation for the whole game. In this paper, we present an algorithm that computes such strategies by solving smaller fixed-point equations for each time tt. This reduces the computational complexity of the problem from double exponential in time to linear in time. Based on this algorithm, we compute stochastic Stackelberg equilibrium of a security example.Comment: 31 pages, 6 figure
    • …
    corecore