317,693 research outputs found

    Exact Algorithms for Solving Stochastic Games

    Full text link
    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games

    Solving parity games: Explicit vs symbolic

    Get PDF
    In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been

    Solving Parity Games in Scala

    Get PDF
    Parity games are two-player games, played on directed graphs, whose nodes are labeled with priorities. Along a play, the maximal priority occurring infinitely often determines the winner. In the last two decades, a variety of algorithms and successive optimizations have been proposed. The majority of them have been implemented in PGSolver, written in OCaml, which has been elected by the community as the de facto platform to solve efficiently parity games as well as evaluate their performance in several specific cases. PGSolver includes the Zielonka Recursive Algorithm that has been shown to perform better than the others in randomly generated games. However, even for arenas with a few thousand of nodes (especially over dense graphs), it requires minutes to solve the corresponding game. In this paper, we deeply revisit the implementation of the recursive algorithm introducing several improvements and making use of Scala Programming Language. These choices have been proved to be very successful, gaining up to two orders of magnitude in running time

    Zielonka's Recursive Algorithm: dull, weak and solitaire games and tighter bounds

    Full text link
    Dull, weak and nested solitaire games are important classes of parity games, capturing, among others, alternation-free mu-calculus and ECTL* model checking problems. These classes can be solved in polynomial time using dedicated algorithms. We investigate the complexity of Zielonka's Recursive algorithm for solving these special games, showing that the algorithm runs in O(d (n + m)) on weak games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested) solitaire games. For the latter classes, we provide a family of games G, allowing us to establish a lower bound of 2^(n/3). We show that an optimisation of Zielonka's algorithm permits solving games from all three classes in polynomial time. Moreover, we show that there is a family of (non-special) games M that permits us to establish a lower bound of 2^(n/3), improving on the previous lower bound for the algorithm.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201

    Solving Imperfect Information Games Using Decomposition

    Full text link
    Decomposition, i.e. independently analyzing possible subgames, has proven to be an essential principle for effective decision-making in perfect information games. However, in imperfect information games, decomposition has proven to be problematic. To date, all proposed techniques for decomposition in imperfect information games have abandoned theoretical guarantees. This work presents the first technique for decomposing an imperfect information game into subgames that can be solved independently, while retaining optimality guarantees on the full-game solution. We can use this technique to construct theoretically justified algorithms that make better use of information available at run-time, overcome memory or disk limitations at run-time, or make a time/space trade-off to overcome memory or disk limitations while solving a game. In particular, we present an algorithm for subgame solving which guarantees performance in the whole game, in contrast to existing methods which may have unbounded error. In addition, we present an offline game solving algorithm, CFR-D, which can produce a Nash equilibrium for a game that is larger than available storage.Comment: 7 pages by 2 columns, 5 figures; April 21 2014 - expand explanations and theor
    • …
    corecore