693 research outputs found

    Solving bilevel programs with the KKT-approach

    Get PDF
    Bilevel programs (BL) form a special class of optimization problems. They appear in many models in economics, game theory and mathematical physics. BL programs show a more complicated structure than standard finite problems. We study the so-called KKT-approach for solving bilevel problems, where the lower level minimality condition is replaced by the KKT- or the FJ-condition. This leads to a special structured mathematical program with complementarity constraints. We analyze the KKT-approach from a generic viewpoint and reveal the advantages and possible drawbacks of this approach for solving BL problems numerically

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Inverse Optimization with Noisy Data

    Full text link
    Inverse optimization refers to the inference of unknown parameters of an optimization problem based on knowledge of its optimal solutions. This paper considers inverse optimization in the setting where measurements of the optimal solutions of a convex optimization problem are corrupted by noise. We first provide a formulation for inverse optimization and prove it to be NP-hard. In contrast to existing methods, we show that the parameter estimates produced by our formulation are statistically consistent. Our approach involves combining a new duality-based reformulation for bilevel programs with a regularization scheme that smooths discontinuities in the formulation. Using epi-convergence theory, we show the regularization parameter can be adjusted to approximate the original inverse optimization problem to arbitrary accuracy, which we use to prove our consistency results. Next, we propose two solution algorithms based on our duality-based formulation. The first is an enumeration algorithm that is applicable to settings where the dimensionality of the parameter space is modest, and the second is a semiparametric approach that combines nonparametric statistics with a modified version of our formulation. These numerical algorithms are shown to maintain the statistical consistency of the underlying formulation. Lastly, using both synthetic and real data, we demonstrate that our approach performs competitively when compared with existing heuristics
    corecore