1,752 research outputs found

    On the Number of Nonnegative Solutions to the Inequality a1 +....ar < n

    Get PDF
    In this paper, we present a simple and fast method for counting the number of nonnegative integer solutions to the equality a1x1+a2x2+: : :+arxr = n where a1; a2; :::; ar and n are positive integers. As an application, we use the method for finding the number of solutions of a Diophantine inequality

    Solving exponential diophantine equations using lattice basis reduction algorithms

    Get PDF
    Let S be the set of all positive integers with prime divisors from a fixed finite set of primes. Algorithms are given for solving the diophantine inequality 0< x − y < yδ in x, y S for fixed δ (0, 1), and for the diophantine equation x + Y = z in x, y, z S. The method is based on multi-dimensional diophantine approximation, in the real and p-adic case, respectively. The main computational tool is the L3-Basis Reduction Algorithm. Elaborate examples are presented

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵΩ=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    Coincidences in generalized Lucas sequences

    Full text link
    For an integer k2k\geq 2, let (Ln(k))n(L_{n}^{(k)})_{n} be the kk-generalized Lucas sequence which starts with 0,,0,2,10,\ldots,0,2,1 (kk terms) and each term afterwards is the sum of the kk preceding terms. In this paper, we find all the integers that appear in different generalized Lucas sequences; i.e., we study the Diophantine equation Ln(k)=Lm()L_n^{(k)}=L_m^{(\ell)} in nonnegative integers n,k,m,n,k,m,\ell with k,2k, \ell\geq 2. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method. This paper is a continuation of the earlier work [4].Comment: 14 page
    corecore