45,728 research outputs found

    Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm

    Full text link
    The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many linear constraints. This paper describes two methods of reducing the cost substantially, answering the problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for refereeing, December 201

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    A Formal Framework for Speedup Learning from Problems and Solutions

    Full text link
    Speedup learning seeks to improve the computational efficiency of problem solving with experience. In this paper, we develop a formal framework for learning efficient problem solving from random problems and their solutions. We apply this framework to two different representations of learned knowledge, namely control rules and macro-operators, and prove theorems that identify sufficient conditions for learning in each representation. Our proofs are constructive in that they are accompanied with learning algorithms. Our framework captures both empirical and explanation-based speedup learning in a unified fashion. We illustrate our framework with implementations in two domains: symbolic integration and Eight Puzzle. This work integrates many strands of experimental and theoretical work in machine learning, including empirical learning of control rules, macro-operator learning, Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file

    Inference of termination conditions for numerical loops

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows to overcome these difficulties. Our approach is based on transforming a program in way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows to perform a correct analysis of such computations automatically, thus, extending previous work on a constraints-based approach to termination. In the last section of the paper we discuss possible extensions of the technique, including incorporating general term orderings.Comment: Presented at WST200

    Finitary Deduction Systems

    Get PDF
    Cryptographic protocols are the cornerstone of security in distributed systems. The formal analysis of their properties is accordingly one of the focus points of the security community, and is usually split among two groups. In the first group, one focuses on trace-based security properties such as confidentiality and authentication, and provides decision procedures for the existence of attacks for an on-line attackers. In the second group, one focuses on equivalence properties such as privacy and guessing attacks, and provides decision procedures for the existence of attacks for an offline attacker. In all cases the attacker is modeled by a deduction system in which his possible actions are expressed. We present in this paper a notion of finitary deduction systems that aims at relating both approaches. We prove that for such deduction systems, deciding equivalence properties for on-line attackers can be reduced to deciding reachability properties in the same setting.Comment: 30 pages. Work begun while in the CASSIS Project, INRIA Nancy Grand Es

    Toric Border Bases

    Get PDF
    We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals

    Computing Equilibria of Semi-algebraic Economies Using Triangular Decomposition and Real Solution Classification

    Full text link
    In this paper, we are concerned with the problem of determining the existence of multiple equilibria in economic models. We propose a general and complete approach for identifying multiplicities of equilibria in semi-algebraic economies, which may be expressed as semi-algebraic systems. The approach is based on triangular decomposition and real solution classification, two powerful tools of algebraic computation. Its effectiveness is illustrated by two examples of application.Comment: 24 pages, 5 figure

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page
    • …
    corecore