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Finitary Deduction Systems

Yannick Chevalier

May 6, 2011

Abstract

Cryptographic protocols are the cornerstone of security in distributed

systems. The formal analysis of their properties is accordingly one of the

focus points of the security community, and is usually split among two

groups. In the first group, one focuses on trace-based security properties

such as confidentiality and authentication, and provides decision proce-

dures for the existence of attacks for an on-line attackers. In the second

group, one focuses on equivalence properties such as privacy and guessing

attacks, and provides decision procedures for the existence of attacks for

an offline attacker. In all cases the attacker is modeled by a deduction

system in which his possible actions are expressed.

We present in this paper a notion of finitary deduction systems that

aims at relating both approaches. We prove that for such deduction sys-

tems, deciding equivalence properties for on-line attackers can be reduced

to deciding reachability properties in the same setting.

1 Introduction

Context. Security protocols, i.e. protocols in which the messages are cryp-
tographically secured, are a cornerstone of security in distributed applications.
The need for optimizing resource utilization and their distributed nature make
their design error prone, and formal methods have been applied successfully to
detect errors in the past [29, 6]. But they are limited in expressiveness since in
most cases authors either were focused on the resolution of reachability prob-
lems, or considered models in which the attacker could not interfere with the
on-going communications among the honest agents. In contrast we consider in
this paper the general case of equivalence properties w.r.t. an on-line attacker.

Formal models of cryptographic protocols usually present the reader with a
dichotomy between the honest agents—translated into a constraint system [5,
30, 31] or a frame [3]—, and the attacker—modeled by a deduction system
expressing its possible actions. In contrast we have introduced in [15] a notion
of symbolic derivation that unifies the honest and dishonest agent models: the
actions of all agents are represented by a sequence of deductions, nonce creation,
and communication actions. The notion of equivalence considered in this paper
is the one of symbolic derivations representing honest agents.
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Intuition. First, a trivial remark: since one can construct deduction systems
for which reachability is decidable but static equivalence is not, it is clear that
generally speaking being able to decide reachability does not imply being able to
decide symbolic equivalence. However, in most cases, one can model reachability
as the satisfiability of a constraint system, and describe the decision procedure
using constraint transformation rules. A solved form is defined as a constraint
system in which the attacker just has to instantiate variables by any term he
can construct. In practice, the proof of completeness of the procedure consists
in assuming the existence of a sequence of deduction steps that satisfies the
constraint system, and in proving that as long as one such sequence exists,
either the constraint system is in solved form or there exists a transformation
rule applicable on the constraint system. Then, an argument is given to prove
that there is no infinite sequence of transformations. Using König’s lemma,
the finiteness (also to be proved) of the number of possible successors of each
constraint system implies termination of the procedure.

Our motivation was that such procedures actually do much more than simply
deciding reachability, as they end with a set of constraint systems in solved form
that, as long as the completeness proof is along the lines given above, cover all
possible attacks. Formalizing this argument is however not trivial, since

• not all instances of the variables occurring in a constraint system in solved
form correspond to attacks; and

• when testing the equivalence of two protocols, we have to take into account
the equality tests the attacker can perform to analyze the responses of the
honest agents.

We have bypassed the first difficulty by imposing that the attacker instantiates
the first-order variables in a constraint system in solved form with constants,
and proved that replacing these constants by any possible construction yields
another attacks. This replacement is formalized by on ordering on the attacks,
the attacks corresponding to solved forms being the minimal ones. Finitary de-
duction systems are those for which the set of minimal attacks is always finite.
The second difficulty is solved by first proving that it suffices to consider an
attacker that performs at most one test, and then proving that this test can be
guessed before the computation of solved forms. Finally and implementation-
wise, we consider effective finitary deduction system, for which we assume that
this finite set is computable.

Applications. The symbolic equivalence notion we consider in this paper has
three straightforward applications, related respectively to on-line guessing at-
tacks, to proving cryptographic properties in a symbolic setting, and to privacy.
We have proved, in collaboration with M. Rusinowitch [19] that every proto-
col narration (for any deduction system) can be compiled into an active frame,
which is a simplified form of symbolic derivations with a total ordering on states
and no intermediate computations between communications.
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Guessing attacks. Introduced by Schneier [34] under the name of dictionary
attacks, they consist in guessing a secret piece of data, and then being able
to check whether the guess is correct. They can be offline, in which case the
attacker observes interactions between honest participants and has to decide
whether the guessed piece of data has been employed, or on-line, in which case
the intruder can interact with the honest participants.

Guessing attacks have been formalized thanks to the concept of indistin-
guishability (see e.g. [2]). We can say now that a protocol is vulnerable to
undetectable on-line guessing attacks whenever (i) the honest agents cannot
distinguish between a session with the right piece of data and one involving a
wrong guess, whereas (ii) the intruder can distinguish the two executions. We
model the first point by stating that the tests performed by the honest agents
succeed in both cases, and the second point by saying that the two executions
are not equivalent.

Cryptographic properties. A line of works initiated by [4] showed that com-
putational proofs of indistinguishability ensuring the security of a protocol can
be derived, under some natural hypothesis on cryptographic primitives, from
symbolic equivalence proofs. This has opened the path to the automation of
computational proofs. It was shown by [20] that in presence of an active at-
tacker observational equivalence of the symbolic processes can be transferred to
the computational level.

Privacy. Symbolic equivalence is a crucial notion for specifying security
properties such as anonymity or secrecy of a ballot in vote protocols [22]. More
generally, the analysis of privacy, e.g. client’s identity in an anonymization
protocol such as IDEMIX [32, 13], in communication protocols is inherently an
equivalence problem. One has to prove that a protocol preserves the strong
secrecy of an attribute, i.e. that an observer cannot distinguish the execution
of a protocol transmitting this attribute’s value, be it a vote or her identity,
from one in which a random piece of data is exchanged.

Related works. We believe that Mathieu Baudet’s modeling of attacks by
instantiation of second-order variables [8] is the real breakthrough that enabled
the formal analysis of the equivalence problem in the on-line attacker setting.
Indeed, it was the first-time that the actions of the attacker were represented
explicitly in solutions, instead of just keeping track (with a substitution on the
first-order variables of the constraint system) of their interaction with the honest
participants.

In collaboration with M. Rusinowitch [19] we have given another proof of
Baudet’s result in the setting of symbolic derivations. We believe that this
setting is more complex but introduces a langage fit to prove decidability and
complexity results. Also it possesses a symmetry between honest participants
and the attacker that permits to greatly simplify otherwise redundant proofs.
We consider in this paper a setting in which the actions of the honest agents
are represented by one Honest symbolic derivation (HSD) and those of a unique
intruder by one Attacker Symbolic Derivation (ASD). Symbolic derivations can
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be seen as standing between symbolic traces [8] and the simple cryptographic
processes of [21]: the sequence of messages is not totally ordered as it is the case
in [8], but there is no branching but for termination on error nor any recursive
process.

Few decidability results are available. In the article [26] Hüttel proves de-
cidability for a fragment of the spi-calculus without recursion for framed bisimi-
larity. Since, the only original decidability result on the equivalence of symbolic
traces1 we are aware of is for the class of subterm deduction systems and was
given by M. Baudet [8, 9]. We have recently given another proof of this re-
sult [18], on which this paper elaborates. Implementation-wise, an efficient
procedure is presented in [14] in which one considers only the Dolev-Yao deduc-
tion system. In spite of the relevance of this problem, we are not aware of any
extension of Baudet’s decidability results to other classes of deduction systems.

In [35] the authors consider, as Hüttel [26], the same problem in the simpler
case of the standard Dolev-Yao syntactic deduction system (with no equational
theory). They employ the notion of solved form as introduced in [5], and more
specifically that solved forms cover all possible attacks. The existence of such a
finite set of solved forms corresponds exactly to our notion of finitary deduction
system.

However, we note that their setting enforces a strict separation between the
values of the first order variables and the observer process. This has in our
opinion two negative side-effects. First, it is well-known that not all instances
of the first-order substitutions constructed are instances of attacks. Second,
given that the authors of [35] only keep track of the constraints that remain to
be solved, the attacks themselves are not represented explicitly in the solution.
Hence it is not possible to reason on all first-order instances of a solved form
(since they are not all attacks) nor on the observer processes (since only their
interaction with the processes under scrutiny is recorded). This is the reason
why we believe that the symbolic derivation setting adopted in this paper, while
more cumbersome at first, is better suited to reason on sets of solutions, and
therefore on process equivalence.

Many works have been dedicated to proving correctness properties of cryp-
tographic protocols using equivalences on process calculi. In particular framed
bisimilarity has been introduced by Abadi and Gordon [3] for this purpose, for
the spi-calculus. Another approach that circumvents the context quantification
problem is presented in [12] where labeled transition systems are constrained
by the knowledge the environment has of names and keys. This approach allows
for more direct proofs of equivalence.

In [21] the authors show how to apply the result by Baudet on S-equivalence
to derive a decision procedure for symbolic equivalence for subterm convergent
theories for simple processes. Since [21] relies on the proof of Baudet’s result,
that is long and difficult [9], we believe that providing a simple criterion will be
useful to derive other decidability results in process algebras.

1a restriction of symbolic equivalence in which the actions of all the honest agents are
totally ordered.
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To the best of our knowledge, the only tool (besides [14]) capable of verifying
equivalence-based secrecy is the resolution-based algorithm of ProVerif [10] that
has been extended for handling equivalences of processes that differ only in
the choice of some terms in the context of the applied π-calculus [11]. This
allows to add some equational theories for modeling properties of the underlying
cryptographic primitives.

Example finitary deduction systems. We remark that the standard Dolev-
Yao deduction system [24] is finitary, since for every attack one can guess a
subsequence of deduction steps which is itself an attack [16]. In this regard,
this work extends [35] to other deduction systems such as subterm deduction
systems (the proof that from every attack one can guess a sequence of deductions
bounded by the size of the input protocol is given e.g. in [28]). We leave
to future work the extension to contracting saturated deduction systems, also
defined in [28].

Organization of this paper. We reuse in this paper the notions and nota-
tions for terms, equational theories, deduction systems, and symbolic derivations
introduced in earlier papers (sections 2–3). We give in Section 4 a few properties
of symbolic derivations, and define finitary deduction systems accordingly. We
present in Section 5 a sketch of the proof the symbolic equivalence is decidable
for finitary deduction systems, and conclude in Section 6. This document is
the version of an article submitted to ACM CCS 2011 with the addition of the
proofs of all statements.

2 Formal setting

2.1 Term algebra

We consider a countable set of free constants C, a countable set of variables X ,
and a signature F (i.e. a set of function symbols with arities). We denote by
T (F) (resp. T (F ,X ) ) the set of terms over F ∪ C (resp. F ∪ C ∪ X ). The
former is called the set of ground terms over F , while the latter is simply called
the set of terms over F . Variables are denoted by x, y, terms are denoted by
s, t, u, v, . . ., and decorations thereof, respectively.

A constant is either a free constant in C or a function symbol of arity 0.
Given a term t we denote by Var(t) the set of variables occurring in t and
by Const(t) the set of constants occurring in t. We denote by atoms(t) the
set Var(t) ∪ Const(t). We denote by A the set of all constants and variables.
A substitution σ is an idempotent mapping from X to T (F ,X ) such that
Supp(σ) = {x|σ(x) 6= x}, the support of σ, is a finite set. The application of
a substitution σ to a term t is denoted tσ and is equal to the term t where all
variables x have been replaced by the term xσ. A substitution σ is ground w.r.t.
F if the image of Supp(σ) is included in T (F).
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The set of the subterms of a term t, denoted Sub(t), is defined inductively
as follows. If t is a constant or a variable then Sub(t) = {t}. Otherwise, t
must be of the form f(t1, . . . , tn), and we define Sub(t) = {t} ∪

⋃n
i=1 Sub(ti).

The positions in a term t are defined recursively as usual (i.e. as sequences
of integers), ǫ being the empty sequence. We denote by t|p the subterm of t
at position p. We denote by t[p ← s] the term obtained by replacing in t the
syntactic subterm t|p by s.

2.2 Equational theories and Unification

We consider in this paper an equational theory E that defines a congruence on
the terms in T (F ,X ) . We assume it is consistent, i.e. that it has a model
with more than one element. Ordered rewriting [23] then permits us to employ
the unfailing completion procedure of [25] to produce a (possibly infinite) set
of equations for which ordered rewriting is convergent on ground terms, its o-
completion. In turn, this convergence permits us to constructively choose one
element in the congruence class of each ground term t, called its normal form,
and denoted (t)↓. We use in this paper the fact that since ordered rewriting is
a relation on ground terms, if a term t is ground then the term (t)↓ is also a
ground term.

This construction relies on the assumption that the ground terms are totally
ordered by a simplification ordering, and that the minimum for this ordering is
a free constant cmin.

2.2.1 Unification and equational theory type

Our result on deduction systems may seem vacuous as the definitions—based
on an ordering on the “attacks” on a protocol—are not constructive. They
however follow a classical line of definitions in the context of unification and
equational theories. We present in this subsection these classical notions (and
refer the reader e.g. to [27] for a more complete overview) in order to hilight
the similitudes between our definitions and the classical ones for unification.

Definition 1 (E-unifiers) Let E be an equational theory. We say that two terms
t and s are E-equal, and denote s =E t, if E |== t = s. We say that a
substitution σ is a E-unifier of s and t if E |== tσ = sσ.

We say that two terms that have a E-unifier are E-unifiable.
We denote ΣE(t, t

′) the set of all unifiers of t and t′. This set is not empty if,
and only if, t and t′ are unifiable. We extend the notion of unifier to conjunctions
of equations as follows.

Definition 2 (Unification systems) Let E be an equational theory. An E-Uni-

fication system S is a finite set of equations denoted by {ui
?
= vi}i∈{1,...,n} with

terms ui, vi ∈ T (F ,X ). It is satisfied by a substitution σ, and we note σ |= ES,
if for all i ∈ {1, . . . , n} uiσ =E viσ.
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One defines an instantiation ordering on unifiers by setting σ ≤i τ when-
ever there exists a substitution θ such that σθ =E τ . Equational theories are
classified [33] w.r.t. the possible cardinalities of complete sets of unifiers.

Definition 3 (Complete set of unifiers) Let E be an equational theory and t, t′

be two terms. We say that a subset S of ΣE(t, t
′) is a complete set of unifiers of

t and t′ if, for every substitution σ ∈ ΣE(t, t
′) there exists a substitution τ ∈ S

and a substitution θ such that τθ =E σ.

Or, using the instantiation ordering terminology, a complete set of unifiers is
a set of minimal unifiers for the instantiation ordering such that every unifier
is an instance of a unifier in this set. Finally, we define a set of most general
unifiers to be a minimal set, for standard set inclusion, among the complete sets
of unifiers. The rationale for this definition is that modulo an equational theory,
two substitutions may be non-trivial instances one of the other. In this case one
of the two is redundant and can be removed, hence the following definition.

Definition 4 (Most general E-unifiers) Let E be an equational theory. We call
a set of most general E-unifiers of t and t′, and denote mguE(t, t

′), a minimal
(for set inclusion) complete set of unifiers of two terms t and t′.

In the rest of this paper, and as long as there is no ambiguity, we simply refer
to such sets as sets of most general unifiers, or sets of mgu. Also, the notion of
mgu is extended as usual to unification systems. One proves the next lemma
by constructing explicitly an injection from each complete set of unifiers to the
other.

Lemma 1 Let E be an equational theory, t, t′ be two terms, and S, S′ be two sets
of most general unifiers of t and t′. Then S and S′ have the same cardinality.

The finiteness or even the existence of a minimal complete set of unifiers
of two terms unifiable modulo E is not guaranteed. We say that an equational
theory is finitary whenever, for every two unifiable terms t, t′, mguE(t, t

′) is a
finite set.

One important property of unification systems that we shall use in the rest
of this paper is the following replacement property.

Lemma 2 For any equational theory E, if a E-unification system S is satisfied
by a substitution σ, and c is any free constant in C away from S, then for any
term t, σδc,t is also a solution of S.

Variables and constants. Using Lemma 2 we can clarify the difference and
similitudes between variables and free constants. First, a formal point: since
free constants do not occur in the equations of the equational theory they are not
among the constants obtained by skolemization. Second, we agree that in the
resolution procedure [1], variables have a special role whereas by Herbrand’s
theorem we know that it suffices to consider models of a set of clauses with
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at most one free constant. In spite of this we almost use variables and free
constants (as in Lemma 2) interchangeably.

The rationale is that ordered completion yields a rewriting relation which is
convergent on ground terms, and thus cannot be employed to normalize terms
that contain variables. Lemma 2 is thus fundamental since it implies that some
of the free constants that may appear in an unifier can be replaced, the main
difference with variables being that if, for a simplification ordering <, we have
t < t′, then for every substitution σ we also have tσ < t′σ, whereas it is not the
case that for every replacement δc,s we also have tδc,s < t′δc,s.

2.3 Deduction systems

Our protocol analysis is based on the assumption that all the agents operate
on messages via a message manipulation library. We consider a signature F
containing the function symbols employed to denote the messages, with a special
subset of symbolsFp denoting the functions of the library which can be employed
by all participants.

Definition 5 (Deduction systems) A deduction system is defined by a triple
(E ,F ,Fp) where E is an equational presentation on a signature F and Fp a
subset of public constructors in F .

Example 1 For instance the following deduction system models public key cryp-
tography:

({decp(encp(x, y), y−1) = x},
{decp( , ), encp( , ), −1},
{decp( , ), encp( , )})

The equational theory is reduced here to a single equation that expresses that
one can decrypt a cipher text when the inverse key is available.

3 Symbolic derivations

We present in this section our model for agents.

3.1 Definitions

Symbolic derivations. Given a deduction system (F ,P , E), a role applies
public symbols in P to construct a response from its initial knowledge and from
messages received so far. Additionally, it may test equalities between messages
to check the well-formedness of a message. Hence the activity of a role can be
expressed by a fixed symbolic derivation:

Definition 6 (Symbolic Derivations) A symbolic derivation for a deduction sys-
tem (F ,P , E) is a tuple (V ,S,K, In,Out) where V is a mapping from a finite
ordered set (Ind, <) to a set of variables Var(V), K is a set of ground terms
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(the initial knowledge) In is a subset of Ind, Out is a multiset of elements of
Ind and S is a unification system.

The set Ind represents internal states of the symbolic derivation. We impose
that any i ∈ Ind is exactly one of the following kind:

Deduction state: There exists a public symbol f ∈ P of arity n such that

V(i)
?
= f(V(α1), . . . ,V(αn)) ∈ S with αj < i for j ∈ {1, . . . , n} .

Re-use state: if there exists j < i with V(j) = V(i);

Memory state: if there exists t in K and an equation V(i)
?
= t in S;

Reception state: if i ∈ In;

Additionally, a state i is also an emission state if i ∈ Out.
The unification system S contains no equation but those described above

and equations V(i)
?
= V(j), and the mapping V must be injective on non-re-use

states.
A symbolic derivation is closed if it has no reception state. A substitution σ

satisfies a closed symbolic derivation if σ |=E S.

We believe that using symbolic derivations instead of more standard con-
straint systems permits one to simplify the proofs by having a more homoge-
neous framework. There is however one drawback to their usage. While most of
the time it is convenient to have an identification between the order of deduc-
tion of messages and their send/receive order, building in this identification too
strictly would prevent us from expressing simple problems. Re-use states are
employed to reorder the deduced messages to fit an order of sending messages
which can be different. For example consider an intruder that knows (after re-
ception) two messages a and b received in that order, and that he has to send
first b, then a. Since the states in a symbolic derivation have to be ordered,
we have to use at least one re-use state (for a) to be able to consider a sending
of a after the sending of b. We note that re-use states that are not employed
in a connection can be safely eliminated without changing the deductions, the
definition of the knowledge nor the tests in the unification system.

With respect to earlier definitions, we have chosen to consider injective
variable-state mapping functions. The rationale for this choice is essentially
aesthetic, as using this more strict definition implies that every equality test

performed by the attacker is an equality V(i)
?
= V(j) in the unification system.

Not having this restriction would require the introduction of a) an equivalence
class on ASDs to model the fact that two ASDs can be solutions to exactly
the same HSDs, and b) the subset of ASDs that have an injective variable-state
mapping function,and c) the construction, by adding equality tests, for every
ASD of an equivalent ASD in this subset.
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Example 2 Let us consider the cryptographic protocol for deduction system DY
where FD and PD have been extended by a free public symbol f :

A→B: encp(Na, pk(B))
B→A: encp(f(Na), pk(A))
where

A knows A,B, pk(B), pk(A), sk(A)
B knows A,B, pk(A), pk(B), sk(B)

Let us define a symbolic derivation for role B:

IndB = {1, . . . , 9}
VB = i ∈ Ind 7→ xi
KB = {A,B, pk(A), pk(B), sk(B)}
InB = {6}

OutB = {9}

SB = {x1
?
= A, x2

?
= B, x3

?
= pk(A), x4

?
= pk(B), x5

?
= sk(B)

x7
?
= decp(x6, x5), x8

?
= f(x7), x9

?
= encp(x8, x3)}

The set of deduction states in B is {7, 8, 9}, there are no re-use state, the set
of memory states is {1, . . . , 5} and the only reception state is 6. Assuming that
the role B tests whether the received message is a cipher, one may add a tenth

deduction state with x10
?
= encp(x7, x4) and an equation x6

?
= x10.

Similarly, a symbolic derivation for role A would be:

IndA = {1, . . . , 10}
V = i ∈ Ind 7→ yi
K = {A,B, pk(A), pk(B), sk(A), Na}
In = {9}

Out = {7}

S = {y1
?
= A, y2

?
= B, y3

?
= pk(A), y4

?
= pk(B), y5

?
= sk(A), y6

?
= Na

y7
?
= encp(y5, y3), y8

?
= f(y6), y10

?
= decp(y9, y5), y10

?
= y8}

The set of deduction states in A is {6, 7, 9}, there are no re-use state, the set
of memory states is {0, . . . , 5} and the only reception state is 8. We have added

an equality test y9
?
= y7 to model that A checks whether the message received

actually contains the encryption of f(Na). Generally speaking, if ground reach-
ability and ground symbolic equivalence for the deduction system are decidable
(see Section 3.3) then an as prudent as possible set of deductions and equality
tests for the narration can be computed (see [17]).

In addition we assume that two symbolic derivations do not share any vari-
able, and that equality between symbolic derivations is defined modulo a re-
naming of variables. The proof of the following lemma is a direct consequence
of the definition.
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Figure 1: Honest symbolic derivations of Example 2 with a connection corre-
sponding to the intended communications and the test equations not shown

Lemma 3 (Properties of symbolic derivations) Let C = (V ,S,K, In,Out) be a
symbolic derivation. We have:

(i)

1. For every variable V(i) there is at most one equation in S of the form

V(i)
?
= f(t1, . . . , tn);

2. If V(i) is a variable such that the above equation is in S, then either a) i
is a deduction state and i = min(j | V(i) = V(j)), or b) i is a re-use state.

We rely on the normal form defined by the o-completion of the equational
theory E to prove that every closed symbolic derivation defines in a unique way
the terms deduced.

Lemma 4 Let I be a deduction system, and consider a closed and satisfiable
I-symbolic derivation C = (V ,S,K, In,Out). Then there exists a unique ground
substitution σ in normal form that satisfies S.
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Proof. Since the symbolic derivation C = (V ,S,K, In,Out) is closed is has
by definition no input states, and thus all states are either knowledge, re-use or
deduction states. By induction on the set of indexes Ind ordered by <.

Base case: Assume i is a minimal element in Ind. By minimality i cannot be
a re-use state. If it is a knowledge state then by definition there exists in

S an equation V(i)
?
= t, with t a ground term in normal form, and thus

for every unifier τ of S we must have V(i)τ = t. If i is a deduction state,
and since it is minimal, the public symbol employed must be of arity 0
and hence is a constant, i.e. again a ground term t. In both cases there
exists a unique ground substitution σ in normal form defined on {V(i)}
and such that any unifier of S is an extension of σ.

Induction case: Assume there exists a unique ground substitution σ in normal
form with support: {V(j) | j < i} such that any unifier of S is an extension
of σ. If i is a re-use state, we note that V(i) is already in the support
of σ, and we are done. If it is a knowledge state, reasoning as in the
basic case permits us to extend σ to V(i). If it is a deduction state then

there exists in S an equation V(i)
?
= f(V(j1), . . . ,V(jn)) with j1, . . . , jn <

i that has to be satisfied by every unifier θ of S. By induction every
such unifier has to be equal to σ on {V(j1), . . . ,V(jn)}. Thus for every
unifier θ of S we have V(i)θ =E f(V(j1)θ, . . . ,V(jn)θ). By induction
f(V(j1)θ, . . . ,V(jn)θ) =E f(V(j1)σ, . . . ,V(jn)σ). Thus, we have V(i)θ =
(f(V(j1)σ, . . . ,V(jn)σ))↓ and σ can be uniquely extended on V(i) with
V(i)σ = (f(V(j1)σ, . . . ,V(jn)σ))↓ which is again a ground term.

�

By Lemma 4, if a derivation is closed, then for every i ∈ Ind the variable
V(i) is instantiated by a ground term. Figuratively we say that a term t is
known at step i in a closed symbolic derivation if there exists j ≤ i such that
V(j) is instantiated by t.

Ground symbolic derivations. An important case when considering pro-
tocol refutation is the one in which the attacker cannot alter the messages
exchanged among the honest participants. This case can either be employed to
model a weaker attacker or, when trying to refute a cryptographic protocol, by
guessing first which messages are sent by the attacker, and then by checking
whether these guesses correspond to messages the attacker can actually send.

Definition 7 (Ground symbolic derivation) We say that a symbolic derivation
Ch = (Vh,Sh,Kh, Inh,Outh) is a ground symbolic derivation whenever Sh is
satisfiable and there exists a ground substitution σ such that, for every unifier
τ of Sh and every i ∈ Indh we have m〉\h(i)σ = m〉\h(i)τ .

In other words the input and output messages of a ground symbolic deriva-
tion are fixed ground terms. We note that since Ch is not closed, and in spite
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of having Sh satisfiable, it is not necessarily true that C⋆h 6= ∅. Also a simple
analysis of the case study of the proof of Lemma 4 shows that it suffices to
assume that σ is defined only on indexes i ∈ Inh.

Connection. We express the communication between two agents represented
each by a symbolic derivation by connecting these symbolic derivations. This
operation consists in identifying some input variables of one derivation with
some output variables of the other and contrariwise. This connection should be
compatible with the variable orderings inherited from each symbolic derivation,
as detailed in the following definition:

Definition 8 Let C1, C2 be two symbolic derivations with for i ∈ {1, 2} Ci =
(Vi,Si,Ki, Ini,Outi), with disjoint sets of variables and index sets (Ind1, <1)
and (Ind2, <2) respectively. Let I1, I2, be subsets of In1, In2, and O1, O2 be
sub-multisets of Out1, Out2 respectively.

Assume that there is a monotone bijection φ from I1 ∪ I2 to O1 ∪ O2 such
that φ(I1) = O2 and φ(I2) = O1. A connection of C1 and C2 over the connection
function φ, denoted C1 ◦φ C2 is a symbolic derivation

C = (V , φ(S1 ∪ S2),K1 ∪K2, (In1 ∪ In2) \ (I1 ∪ I2), (Out1 ∪Out2) \ (O1 ∪O2))

where:

• (Ind, <) is defined by:

– Ind = (Ind1 \ I1) ∪ (Ind2 \ I2);

– < is the transitive closure of the relation: <1 ∪ <2;

• φ is extended to a renaming of variables in Var(V1) ∪ Var(V2) such that
φ(V1(i)) = V2(j) (resp. φ(V2(i)) = V1(j)) if i ∈ I1 (resp. I2) and φ(i) = j

When the exact connection function in a connection does not matter, is uniquely
defined, or is described otherwise, we will omit the subscript and denote it C1◦C2.

A connection is satisfiable if the resulting symbolic derivation is satisfiable.
It can easily computed, when it exists, by considering increasing sequences of
states in each symbolic derivation and mapping input states of one SD with
output states of the other.

Example 3 Let Ch be the symbolic derivation in Example 2:

Indh = {0, . . . , 8}
Vh = i ∈ Ind 7→ xi
Kh = {A,B, pk(A), pk(B), sk(B)}
Inh = {5}

Outh = {0, . . . , 8, 8}

Sh = {x0
?
= A, x1

?
= B, x2

?
= pk(A), x3

?
= pk(B), x4

?
= sk(B)

x6
?
= decp(x5, x4), x7

?
= f(x6), x8

?
= encp(x7, x2)}
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We model the initial knowledge of the intruder with another symbolic derivation
CK:

IndK = {0k, . . . , 3k}
VK = ik ∈ Indk 7→ yi
KK = {A,B, pk(A), pk(B)}
InK = ∅

OutK = IndK

SK = {y0
?
= A, y1

?
= B, y2

?
= pk(A), y3

?
= pk(B)}

and we let C′ be the following derivation:

Ind
′ = {0′, . . . , 8}
V ′ = i′ ∈ Ind

′ 7→ zi
K = {n} ⊂ Cnew

In′ = {0′, . . . , 3′, 8′}
Out′ = {5′} ∪ Ind

′

S ′ = {z4
?
= n, z5

?
= encp(z4, z3),

z6
?
= f(z4), z7

?
= encp(z6, z2), z8

?
= z7}

Let φ be the application from 0k, . . . , 3k, 5′, 8 to 0′, . . . , 3′, 5, 8′ respectively and
ψ be a function of empty domain. Then we have (Ch ◦ψ CK) ◦φ C′:

Ind = {0, . . . , 4, 0k, . . . , 3k, 5′, 6′, 7′, 6, 7, 8}
V = Vh|Ind ∪ VK |Ind ∪ V

′
|Ind

K = {A,B, pk(A), pk(B), sk(B), n}
In = ∅

Out = Ind ∩ Ind
′

S = {x0
?
= A, x1

?
= B, x2

?
= pk(A), x3

?
= pk(B), x4

?
= sk(B)

x6
?
= decp(x5, x4), x7

?
= f(x6), x8

?
= encp(x7, x2)

y0
?
= A, y1

?
= B, y2

?
= pk(A), y3

?
= pk(B)

z5
?
= n, z6

?
= encp(z5, z3),

z7
?
= f(z5), z8

?
= encp(z7, z2), z9

?
= z8}

with the ordering:

0 < 1 < 2 < 3 < 4 < 5′ < 6 < 7 < 8
0k < . . . < 3k < 4′ < . . . < 7′ < 8

The connection of two symbolic derivations C1 and C2 identifies variables in
the input of one with variables in the output of the other. Variables that have
been identified are removed from the input/output set of the resulting symbolic
derivation C. The set of equality constraints of C is the union of the equality
constraints in C1 and C2, plus equalities stemming from the identification of input
and output. We have chosen to have a multiset of output variables to enable
the modeler to specify whether a communication between two participants is

14



hidden—when the output state occurs only once in the initial output multiset—
or visible—in which case there is more than one occurrence of the output state
in the initial output multiset—to an external observer.

One easily checks that a connection of two symbolic derivations is also a sym-
bolic derivation. Also, the associativity of function composition applied on the
connections implies the associativity of the connection of symbolic derivations.
Since connection functions are bijective, we will also identify C ◦ C′ and C′ ◦ C.
Thus when we compose several symbolic derivations, we will freely re-arrange
or remove parentheses.

Traces. Let C1 and C2 be two I-symbolic derivations and ϕ be a connection
such that C = C1 ◦ϕ C2 = (V ,S,K, In,Out) is closed and satisfiable. Lemma 4
implies that there exists a unique ground substitution τ in normal form such that
any unifier σ of S1 ∪S2 is equal to τ on the image of V . We denote TrC1◦ϕC2(C

′)
the restriction of this substitution τ to the variables in the sequence of C′, for
C′ ∈ {C1, C2, C1 ◦ϕ C2}, and call it the trace of the connection on C′. In the rest
of this paper we will always assume that trace substitutions are in normal form.

3.2 Solutions of symbolic derivations

3.2.1 Honest and attacker symbolic derivations

Generally speaking, a solution of a symbolic derivation C is any couple (C′, ϕ)
such that C ◦ϕ C′ is closed and satisfiable. We specialize this definition for the
case of protocol analysis in order to ensure that every term possessed by the
attacker, including her initial knowledge, has been either leaked by the protocol
or is a nonce she has created. This consideration lead us to consider two types
of symbolic derivations, one that is employed to model honest agents, and one
to model an attacker.

Honest derivations. We do not impose constraints on the symbolic deriva-
tions representing honest principals, but for the avoidance of constants in an
infinite set Cnew ⊆ C. These constants are employed to model new values cre-
ated by an attacker. We assume that nonces created by the honest agents are
created at the beginning of their execution and are constants away from Cnew.

Definition 9 (Honest symbolic derivations) A symbolic derivation C is an hon-
est symbolic derivation or HSD, if the constants occurring in C are away from
Cnew.

Example 4 The symbolic derivation for role B in Example 2 is honest.

Attacker derivations. We consider an attacker modeled by a symbolic deriva-
tion in which only the following actions are possible:

• create a fresh, random value;
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• receive from and send a message to one of the honest participant;

• deduce a new message from the set of already known messages;

• every state is in Out given that the intruder should be able to observe
his own knowledge;

• given that we consider an actual execution, the set of states is totally
ordered.

The definition of attacker symbolic derivations models these constraints:

Definition 10 (Attacker symbolic derivations) Let C = (V ,S,K, In,Out) be a
symbolic derivation. It is an attacker symbolic derivation, or ASD, if a) Ind

is a total order, and b) Out contains at least one occurrence of each index in
Ind, and c) K is a subset of Cnew.

The fact that the initial knowledge of the attacker is empty but for the
nonces is not a restriction when analyzing protocols, as one can see from Ex. 3.

Example 5 The following derivation C′ is an ASD for the same deduction sys-
tem as Example 2:

Ind
′ = {0′, . . . , 8}
V ′ = i′ ∈ Ind

′ 7→ zi
K = {n} ⊂ Cnew

In′ = {0′, . . . , 3′, 8′}
Out′ = {5′} ∪ Ind

′

S ′ = {z4
?
= n, z5

?
= encp(z4, z3),

z6
?
= f(z4), z7

?
= encp(z6, z2), z8

?
= z7}

Informally the ASD expresses that the attacker receives some key k, creates a
nonce n, sends the encrypted nonce to a role B as in Example 2. Then the
attacker tries to check that applying f to n gives a term equal to the decryption
of B’s response.

Solutions of a symbolic derivation. Given a symbolic derivation Ch we
denote C⋆h the set of couples (C, ϕ) where C is an ASD and ϕ is a connection
function between C and Ch such that Ch ◦ C is closed and satisfiable. In that
case we say that C is a solution of Ch.

Example 6 In Example 3 the ASD C′ is a solution of Ch ◦ CK since (Ch ◦ψ
CK) ◦φ C′ is closed and S is satisfiable (by simply propagating the equalities
x0 = A, x1 = B, . . .).
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3.3 Decision problems

Satisfiability. The problem of the existence of a secrecy attack on a bounded
protocol execution—shown to be NP-complete in [31] for the standard Dolev-
Yao deduction system—is equivalent to the satisfiability problem below.
I-Satisfiability

Input: a HSD C
Output: Sat iff C⋆ 6= ∅

A variant of I-satisfiability is its restriction to set of inputs C which are
ground symbolic derivations, and that we call I-ground satisfiability.
Ground I-Satisfiability

Input: a ground HSD C
Output: Sat iff C⋆ 6= ∅

Equivalence. Let us now define the equivalence of HSDs w.r.t. an active
intruder.

Definition 11 Two HSDs Ch and C′h are symbolically equivalent iff C⋆h = C′h
⋆
.

I-Symbolic Equivalence

Input: Two honest I-symbolic derivations Ch and C′h
Output: Sat iff Ch

⋆ = C′h
⋆
.

Again it is possible to define a ground version of the I-symbolic equivalence
problem when the input consists in two ground symbolic derivations. One can
easily encode static equivalence problems into ground I-Symbolic Equivalence
problems by publishing every constant not hidden in the frame.
Ground I-Symbolic Equivalence

Input: Two honest I-ground symbolic derivations Ch and C′h
Output: Sat iff Ch

⋆ = C′h
⋆
.

Remark. Another possible definition of the set of solutions would be a set
of ASDs, without mention of the connection function. The equivalence relation
would have been distinct since in that case an ASD can be in two sets of solutions
but without the same connection function. However, this would have had no
impact on our decidability result. Our choice in this paper corresponds to
diff-equivalence between biprocesses [11]: the diff operator defines a bijection
between the in- and output states of two processes derivations, and the equality
of the sets of solutions is understood modulo this one-to-one function.

4 Finitary Deduction Systems

An equational theory E is finitary whenever every E-unification system has a
finite set of more general unifiers. We define an analog for deduction systems
w.r.t. symbolic derivations rather than equational theories w.r.t. unification
systems. In the rest of this paper, we consider effective finitary deduction
systems, i.e. deduction systems for which it is possible to compute a finite
set of “most general attacks”.
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4.1 Stutter-free ASDs

We say that an ASD CI is well-formed w.r.t. a HSD Ch and a connection ϕ if,
in the connection Ch ◦ϕ CI , a deduction subsequently applied on a deduced term
t, or a re-use of the term t is always applied by referring to the state in which t
was first deduced.

Definition 12 (Well-formed ASD) Let Ch be a HSD and consider an ASD
CI = (VI ,SI ,KI , InI ,OutI) such that (CI , ϕ) ∈ C⋆h, and σ = TrCI◦ϕCh(CI).
We say that CI is (Ch, ϕ)-well-formed if for every deduction states i, for every
state j ∈ IndI with i < j we have VI(i)σ = VI(j)σ implies that

• either VI(i) = VI(j), i.e. j is a re-use state;

• or there is no equation x
?
= f(. . . ,VI(j), . . .) in SI and j is not an emission

state.

This restriction is mostly syntactic, and can be assumed w.l.o.g. for our
purpose, as shown by the Lemma 8.

Our aim is the reduction of equivalence problems to reachability problems
for finitary deduction systems. In the latter problems, one only considers which
terms are deducible by the attacker. Hence the following definitions that will
be employed to split an ASD into a deduction only part solving a reachability
problem and a testing part modeling the possible tests.

Definition 13 (Deduction-only ASD) An ASD CI = (VI ,SI ,KI , InI ,OutI)

is deduction-only if SI contains no equation VI(i)
?
= VI(j).

Definition 14 (Testing ASD) An ASD CI = (VI ,SI ,KI , InI ,OutI) is testing
if KI = ∅.

Definition 15 (Stutter-free ASDs) A well-formed deduction-only ASD is said
to be stutter-free.

Given a HSD Ch we denote Ch
sf the set of stutter-free solutions of Ch. These

ASDs have the special property that a connection cannot be unsatisfiable be-
cause of a rejection by the attacker. Formally speaking, we have the following
proposition.

Proposition 1 Let CI = (VI ,SI ,KI , InI ,OutI) ∈ C⋆h be a deduction-only
ASD. Then for any ground substitution σ of domain InI the unification system
SIσ is satisfiable in the empty theory.

Proof. We remind that a unification system S is in solved form in the
empty theory if and only if there exists an ordering <u on variables such that

S contains, for each variable x, at most one equation x
?
= t and if for every

y ∈ Var(t) we have y <u x. First let us notice that since CI is deduction-only,

SI does not contain any equation VI(i)
?
= VI(j) with VI(i) 6= VI(j).
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By definition SI contains exactly one equation VI(i)
?
= t if i is not an input

or the re-use of an input state, and none otherwise. In the former case we
can assume that for a mgu θ of S we have V(i)θ = V(i). Using the ordering
on states as the ordering <u, Lemma 3 implies that SI is in solved form, and

adding to SI equations VI(i)
?
= ti, for i ∈ InI and ti a ground term thus leads

to a unification system also in solved form. �

4.2 Sets of solutions

Outline. We prove in this section that ASDs are such that, when replacing a
constant in Cnew by the result of a sequence of compositions (this operation is
called opening) we obtain another ASD which can be connected to all the HSDs
the original ASD could be connected to (Lemma 5). This notion of replacement
acts as the instantiation of a unifier modulo an equational theory. Accordingly
we define from it a well-founded ordering on ASDs mimicking the role of the
instantiation ordering on unifiers. Finally, we prove that given a set of ASDs
S, the inclusion S ⊆ C⋆h can be check by testing only the minimal ASDs in S
(Lemma 6).

Opening of symbolic derivations. If C = (V ,S,K, In,Out) and C ⊆
Cnew ∩ K is a set such such that C ∩ Sub(K \ C) = ∅, we open C on C, and
denote the operation openC(C), when for each c ∈ C:

• If i ∈ Ind is the first knowledge state with V(i)
?
= c ∈ S, we remove this

equation from S and add i to the input states;

• we replace all occurrences of c in C by V(i).

We note that the set K′ obtained from K after the replacement is still a set of
ground terms since C ∩ Sub(K \C) = ∅, and thus the result of the operation is
still a symbolic derivation. Also, C is an ASD, then so is openC(C).

Lemma 5 Let CI ∈ C⋆h with CI = (VI ,SI ,KI , InI ,OutI), let C ⊆ KI and let

Cc ∈ C′h
sf
for some HSD C′h. If a connection Cc ◦ Ch ◦ openC(CI) is closed then

it is satisfiable.

Proof. By Proposition 1 TrCc◦Ch◦open{c}(CI)(Cc) satisfies Sc. Since CI is an

ASD we have C ∩Sub(K\C) = ∅, and thus C ∩Sub(Sh) = ∅. Let us denote S ′I
the unification system SI in which the equations x

?
= c with c ∈ C are removed.

For any substitution σ and any constant c ∈ C, Lemma 2 and σ |=E Sh ◦ S ′I
imply σδc,t |=E Sh ◦ S ′I .

Let σ′ = TrCc◦Ch◦openC(CI)(CI). For each memory state i ∈ IndI that con-
tains a constant c ∈ C we let tc = VI(i)σ′. We define δ as the replacement of
each constant c ∈ C by the term tc.

By induction on the indexes of the connection Cc ◦ Ch ◦ openC(CI) we have:

TrCc◦Ch◦openC(CI)(Cc ◦ Ch ◦ openC(CI)) = TrCh◦CI (Ch ◦ CI)δ
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Thus every equation in Sh∪SI (minus the removed memory equations) is satis-
fied by the composition with Cc. Since every equation in its unification system
is satisfied the connection Cc ◦ Ch ◦ openC(CI) is satisfiable. �

Ordering on symbolic derivations. Consider two symbolic derivations:

{

CI = (VI ,SI ,KI , InI ,OutI)
C′I = (V ′

I ,S
′
I ,K

′
I , In

′
I ,Out

′
I)

We say that CI ≤ C′I if:

• there exists C ⊆ KI , a stutter-free symbolic derivation CC and a connec-
tion ϕ such that CC ◦ϕ openC(CI) = C

′
I modulo a renaming of variables;

• or there exists a set of memory states I ⊆ Ind
′
I such that CI is equal to

C′′I = (V ′′
I ,S

′′
I ,K

′′
I , In

′′
I ,Out

′′
I) where:

– V ′′
I is the restriction of V ′

I to the domain Ind
′
I \ I

– and S ′′I = S ′I \ {V
′
I(i)

?
= ci}i∈I .

We say that CI , C′I are equivalent modulo a renaming of nonces, and denote
CI ≡ C′I , whenever there exists C ⊆ KI , a stutter-free symbolic derivation CC
with only memory states, and a connection ϕ such that CC ◦ϕ openC(CI) = C

′
h.

Given a set S of ASDs we denote min<(S) the set of ASDs in S that are minimal
in S modulo renaming of nonces.

Since C ≤ C′ implies that either: a) C has strictly less deduction states
than C′, and less states, b) C has strictly less states than C’, c) or C and C′ are
equivalent modulo a renaming of nonces, it is clear that < is a well-founded
ordering relation modulo this renaming.

Lemma 6 Let S be a set of ASDs and Ch be a HSD. If min<(S) ⊆ Ch
⋆ then

S ⊆ Ch
⋆.

Proof. Assume min<(S) ⊆ Ch
⋆ and let CI be in S. By definition of the

ordering, first point, there exists a derivation C′I ∈ min<(S), a set of constants
C, and a stutter-free derivation Cc such that Cc◦openC(C

′
I) = CI . By hypothesis

we have C′I ∈ Ch
⋆. By Lemma 5 this implies that CI = Cc ◦ openC(C

′
I) is also in

Ch
⋆. �

Complete sets of solutions. The ordering < plays the same role w.r.t. the
solutions of a HSD as the instantiation ordering on substitutions w.r.t. the
solutions of an unification system. In particular the traditional notion of most
general unifier is translated into a notion of minimal solution.

Definition 16 (Complete set of solutions) A set Σ of ASDs is a complete set
of solutions of an HSD Ch whenever:

• Σ ⊆ C⋆h;
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• for every ASD CI ∈ Csfh there exists an ASD Cm ∈ Σ and a stutter free
ASD Cc such that Cm ≤ CI ◦ Cc.

We have departed from our line of translating terms from the unification
framework to the symbolic derivation framework by introducing a symbolic
derivation Cc. It permits us to consider cases in which the computation of a
complete set of unifiers introduces unnecessary deduction steps in individual
ASDs. A common example of such addition is the normalization of messages
〈t, t′〉, i.e. the automatic deduction of the two messages t and t′ even when they
are not useful for the attacker.

4.3 Finitary deduction systems

We have already noted that a NP decision procedure for the satisfiability of
HSDs for the Dolev-Yao deduction system is known since [31]. While this proce-
dure is based on the guessing of an attack of minimal size, other procedures have
been proposed [5, 30] that instead cover all possible stutter-free derivations [16],
i.e. compute a complete set of solutions. We define deduction systems for which
such a procedure exists to be finitary.

Definition 17 (Finitary Deduction Systems) Let I be a deduction system. If
there exists a procedure that computes for every I-HSD Ch a finite complete set
of solutions we say that I is a finitary deduction system.

5 Decidability of Symbolic Equivalence

This section is devoted to the proof of the main theorem of this paper.

Theorem 1 Symbolic equivalence is decidable for finitary deduction systems.

We first prove that every ASD can be written as the connection between a
stutter-free ASD and a testing ASD in which no new term is deduced (Lemma 7).
This implies the reduction of the inclusion problem to the one of checking
whether, for any stutter-free ASD in C⋆h, the connections of this ASD with
Ch and C′h result in closed symbolic derivations C1 and C2 such that C⋆1 ⊆ C

⋆
2

(Lemma 9). Given a stutter-free ASD in C⋆h this latter test is simple since it
suffices to consider the connection with ASD that have at most one deduction
(Prop. 2).

We relate these types of ASD with well-formed ASDs with the following
lemma.

Lemma 7 Let CI be a (Ch, ϕ)-well-formed ASD. Then there exists a connection
ψ, a well-formed deduction-only ASD Cd, and a testing ASD Ct such that:

• CI = Cd ◦ψ Ct,

• for all HSD C′ and connection ψ, the connection C′ ◦ψ CI is closed if, and
only if, C′ ◦ψ Cd is closed.
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Proof. Let Ch be a HSD, CI = (VI ,SI ,KI , InI ,OutI) bean ASD, and ϕ be
a connection such that (CI , ϕ) ∈ C⋆h. We construct a sequence of couples (Cd, Ct)
of ASDs such that Cd is deduction-only, Ct is testing, and such that in the end
Cd is well-formed. We start from:

{

Cd = (VI ,SI \ S=,KI , InI ,OutI ∪ IndI)
Ct = (VI ,S=, ∅, IndI ,OutI)

and the connection ψ being the identity. By construction Ct is testing and Cd is
deduction-only. However Cd may not be well-formed.

For each deduction state i in Cd such that there exists a deduction state
j < i with VI(i)σ = VI(j)σ, let SVI(i) be the subset of equations of SI in
which VI(i) occurs. Since i is a deduction state, SVI(i) contains one equation

VI(i)
?
= f(x1, . . . , xn). Since the ASD is well-formed, all other equations in

SVI(i) are of the form VI(i)
?
= VI(j), and thus are already in S=. We obtain a

new couple of ASDs (C′d, C
′
t) by removing the state i from Cd (and thus from the

output variables of Cd, removing i from the input states of Ct, and adding the

equation VI(i)
?
= f(x1, . . . , xn) to the unification system of Ct, thereby making

i a deduction state in Ct.
It is clear that once the construction is performed on every deduction states

from Cd, this symbolic derivation will be well-formed. �

Lemma 8 Let Ch, C′h be two HSDs such that C⋆h \ C
′
h
⋆ 6= ∅. Then C⋆h \ C

′
h
⋆

contains a (Ch, ϕ)-well-formed ASD.

Proof. Assume (CI , ϕ) ∈ C⋆h \ C
′
h
⋆
, and CI = (VI ,SI ,KI , InI ,OutI), and

σ = TrCI◦ϕCh(CI). By hypothesis σ satisfies SI . Let S1 be the set of equations

VI(i)
?
= VI(j) on all states i, j such that: a) i is a deduction state, and b) i < j,

and c) VI(i)σ = VI(j)σ. It is clear that SI ∪ S1 is also satisfied by σ.

Then, replace in SI each equation x
?
= f(. . . ,VI(j), . . .) such that there

exists a deduction state i < j with VI(i)σ = VI(j)σ by the equation x
?
=

f(. . . ,VI(i), . . .), and let SI
′ be the obtained unification system. Given the

equations in S1 it is clear that SI ∪ S1 and SI
′ ∪ S1 are satisfied by the same

set of substitutions.
Let CI

′ = (VI ,SI
′ ∪ S1,KI , InI ,OutI). It remains to note that:

• TrCI◦ϕCh(CI ◦ϕ Ch) = TrCI
′◦ϕCh(CI

′ ◦ϕ Ch);

• TrCI◦ϕC′
h
(CI ◦ϕ C′h) = TrCI

′◦ϕC′
h
(CI

′ ◦ϕ C′h), and thus (CI
′, ϕ) /∈ C′h;

• by construction CI
′ is (Ch, ϕ)-well-formed.

Thus, CI
′ is (Ch, ϕ)-well-formed ASD in C⋆h \ C

′
h
⋆
. �

As a consequence, we obtain the following lemma that permits to split the
symbolic equivalence problem into two simpler problems.
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Lemma 9 Let Ch and C′h be two HSDs. We have C⋆h ⊆ C
′⋆
h if, and only if:

• Csfh ⊆ C
′⋆
h ;

• and for each ASD CI ∈ Csfh and for all testing ASD Ct ∈ (CI ◦ Ch)⋆ we
have Ct ∈ (CI ◦ C′h)

⋆.

Proof. Assume (CI , ψ) ∈ C⋆h \ C
′⋆
h . By Lemma 8 we can assume wlog that

CI = (VI ,SI ,KI , InI ,OutI) is well-formed. By Lemma 7 CI can be written
Cd ◦ϕ Ct where Cd is a stutter-free ASD and Ct is a testing ASD. By construction
we have (Ct, ϕ) ∈ (Cd ◦ψ Ch)⋆. Since Cd ◦ϕ Ct = CI /∈ C′h

⋆
then either Cd ◦ψ C′h

is closed, but not satisfiable, or Ct ◦ϕ (Cd ◦ψ C′h). In the former case we have
Csfh 6⊆ C

′⋆
h , and in the latter case we have Ct ∈ (CI ◦ Ch)⋆ \ (CI ◦ C′h)

⋆.
Conversely, if one of the two points does not hold, we easily construct an

ASD in C⋆h \ C
′⋆
h . �

Then we prove that if in the previous lemma the testing part is known, the
stutter-free part is also a stutter-free solution of the connection between the
testing part and the HSD.

Lemma 10 Assume CI ∈ Csfh and Ct ∈ (CI ◦ Ch)⋆. Then CI ∈ (Ct ◦ Ch)sf.

Proof. We let CI , Ch, and Ct be as in the statement of the lemma, and denote
them as follows:







CI = (VI ,SI ,KI , InI ,OutI)
Ch = (Vh,Sh,Kh, Inh,Outh)
Ct = (Vt,St,Kt, Int,Outt)

Since CI ∈ Csfh there exists a one-to-one2 mapping ϕ : InI ∪ Inh → OutI ∪
Outh such that C′h = CI ◦ϕ Ch is closed and satisfiable. Let us denote C′h =
(V ′
h,S

′
h,K

′
h, In

′
h,Out

′
h).

Also by hypothesis there exists a one-to-one mapping ψ : In′
h∪Int → Out

′
h∪

Outt such that Ct ◦ψ C′h is closed and satisfiable. Since C′h is closed the function
ψ is actually a mapping from Int to Out

′
h ∪Outt. Let D be the subset of the

domain of ψ of indexes i such that ψ(i) ∈ OutI , and D̄ be its complement in
the domain of ψ. Let us define from ψ and D two functions:

{

ψ′ = ψ|D̄

ϕ′ = ψ|D ∪ ϕ

Let C′′h = Ch ◦ψ′ Ct. Since by construction

CI ◦ϕ′ (Ch ◦ψ′ Ct) = Ct ◦ψ (Ch ◦ϕ CI)

and Ct ∈ (Ch ◦ϕ CI)⋆ the connection between CI and C′′h is also closed and
satisfiable, and thus CI ∈ (C′′h)

⋆. Since CI ∈ Csfh the first two points of the
definition of stutter free derivations are satisfied by CI . Given that:

ϕ′
Inh∪InI

= ϕInh∪InI

2Since the connection is closed the mapping is total.
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it is easy to see that:

TrCI◦ϕ′ (Ch◦ψ′Ct)(CI) = TrCI◦ϕCh(CI)

As a consequence the hypothesis CI ∈ Csfh implies CI ∈ (C′′h)
sf. �

The next step is to bound the size of the testing ASD Ct obtained in Lemma 9.
To this end, given an ASD CI ∈ Csfh we define:

χ(CI) = {Ct testing ASD | Ct ◦ CI ∈ C
⋆
h \ C

′
h
⋆
}

i.e. the set of testing ASDs that distinguish Ch from C′h. By Lemma 9, C⋆h 6⊆ C
′
h
⋆

if, and only if, there exists an ASD CI such that χ(CI) 6= ∅. By ordering the
equations in the unification system of an ASD Ct ∈ χ(CI) and keeping a minimal
one, we prove that an ASD of bounded length can be constructed from Ct.

Proposition 2 C⋆h 6⊆ C
′
h
⋆
if, and only if, there exists CI ∈ Csfh such that χ(CI)

contains an ASD Ct with at most one deduction and one equality test.

Proof. The converse direction is trivial.
First let us note that if C′ ∈ C⋆h \ C

′
h
⋆
then, adding test equations to C′ which

are satisfied by TrC′◦Ch(C
′) yields another symbolic derivation in C′ ∈ C⋆h \ C

′
h
⋆.

Thus and wlog we let C′ ∈ C⋆h \ C
′
h
⋆
be an aware ASD. According to Lemma 7

C′ can be split into one stutter-free derivation CI = (VI ,SI ,KI , InI ,OutI)
and one test derivation Ct = (Vt,St,Kt, Int,Outt). We also define a partition
Sdt ∪ S

t
t of St such that Sdt contains only deduction equations and Stt contains

only test equations. Let Cdt = (Vt,Sdt ,Kt, Int,Outt). Let us define the following
substitutions:

{

σI = TrCI◦Ch(CI) σ′
I = TrCI◦C′

h
(CI)

σt = TrCt◦CI◦Ch(Ct) σ′
t = TrC′

t◦CI◦Ch(C
′
t)

where the ASD C′t is constructed from Ct as follows. We note that, if Vt(i) =
Vt(j) for two distinct states i, j which are not reuse states, we can introduce
a new variable x, change Vt(j) to x, and introduce in St a new test equation

Vt(i)
?
= x. In other words we can assume wlog that Vt is injective on states

which are not reuse states. This permits one to ensure that the subset Sdt of
equations which are not test equations is satisfiable in any closed connection
with another symbolic derivation. We define σdt = TrCdt ◦CI◦C′

h
(Cdt ).

By the second point of Lemma 7 there exists a mapping ψ : Indt → IndI

such that for every i ∈ Indt we have Vt(i)σt = VI(ψ(i))σI . Wlog we assume
that ψ is defined as an extension of the connection between CI and Ct, thereby
ensuring that for input states i of Ct we also have Vt(i)σ′

t = VI(ψ(i))σ
′
I .

Claim 1. Wlog we can assume that for any deduction state i ∈ Indt we have
Vt(i)σ′

t 6= VI(ψ(i))σ
′
I .
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Proof of the claim. Let i ∈ Indt be a deduction state such that Vt(i)σ′
t =

VI(ψ(i))σ′
I . Adding a reuse state if necessary, we can change i into an

input state that is connected to ψ(t) (or a state which is a reuse of ψ(i)).
This construction does not change σt nor σ′

t and thus the fact that Ct ◦
CI ◦Ch or Ct ◦CI ◦C′h is satisfiable. When repeatedly applying it, we obtain
a symbolic derivation Ct that satisfies the claim. ♦

We now split the analysis in two cases depending on whether the set It ⊆
Indt of indexes i such that Vt(i)σ′

t 6= VI(ψ(i))σ
′
I is empty or not. If it is

empty, the claim implies that we can assume there is no deduction states in
Ct, and thus that St = Stt . Since Ct ◦ CI ◦ Ch is satisfiable but not Ct ◦ CI ◦ C′h
there exists two input states i, j and one equation Vt(i)

?
= Vt(j) in St which

is satisfied by σt but not by σ′
t. Thus χ(CI) contains one symbolic derivation

(V : i ∈ {1, 2} 7→ xi, {x1
?
= x2}, ∅, {1, 2}, ∅) where 1 is connected to ψ(i) and 2

is connected to ψ(j).
On the other hand, if It is not empty, let i0 be minimal in this set, and let

Vt(i0)
?
= f(Vt(i1), . . . ,Vt(in)) be the equation corresponding to this deduction

state in Sdt . Given the claim we can assume that it is the first deduction state,
and thus that all preceding states are input states. Thus there exists an ordering
on the set Ind0 = {t, 0, . . . , n} such that the following symbolic derivation is in
χ(CI) and satisfies the proposition:

(V : i ∈ Ind0 7→ xi, {x0
?
= f(x1, . . . , xn) , x0

?
= xt}, {t, 1, . . . , n}, ∅)

�

Now we simply gather the results from Lemma 10 and Proposition 2.

Proposition 3 Given two HSDs Ch and C′h we have C⋆h ⊆ C
′
h
⋆
if, and only if,

there exists a symbolic testing derivation Ct with at most one deduction state
and one equality and a connection ϕ such that (Ch ◦ϕ Ct)sf ⊆ (C′h ◦ϕ Ct)

⋆.

Proof. Let us first prove the contrapositive of the direct direction. Let CI be
an ASD in (Ch ◦ϕ Ct)sf \ (C′h ◦ϕ Ct)

⋆, and ψ be a connection such that:

{

CI ◦ψ (Ch ◦ϕ Ct) is closed and satisfiable
CI ◦ψ (C′h ◦ϕ Ct) is closed and not satisfiable

From ϕ and ψ we easily define two connections ϕ′ and ψ′ such that CI ◦ϕ′ Ct
is an ASD C′I such that C′I ◦ψ′ Ch is closed and satisfiable whereas C′I ◦ψ′ C′h is
closed but not satisfiable. Hence:

(Ch ◦ϕ Ct)
sf \ (C′h ◦ϕ Ct)

⋆ 6= ∅

implies C⋆h 6⊆ C
′
h
⋆.

25



Let us now prove the contrapositive of the converse implication and assume
C⋆h 6⊆ C

′
h
⋆
. By Proposition 2 there exists a symbolic derivation CI ∈ Csfh , a testing

ASD Ct and a connection ψ such that:







Ct ◦ψ CI ∈ Ch
⋆

Ct ◦ψ CI /∈ C′h
⋆

Ct contains at most one deduction and one equality test

By Lemma 10 this implies that there exists a connection ϕ such that CI ∈
(Ch ◦ϕ Ct)sf. Given the construction it is clear that CI /∈ (C′h ◦ϕ Ct)

⋆. �

The proof of the following theorem depends on the fact that for finitary
deduction systems, the set min<((Ct ◦ Ch)sf) is by definition finite. The test of
Proposition 3 thus becomes effective by Lemma 6 when a finite witness set is
available.

Theorem 2 (Inclusion of C⋆h into C′h
⋆) Let D be a finitary deduction system.

The inclusion C⋆h ⊆ C
′
h
⋆
is decidable for any two honest D-symbolic derivations

Ch, C′h.

Proof. By Prop. 3 the inclusion does not hold if, and only if, there exists an
ASD Ct of bounded length and a connection function ϕ such that:

∆ = (Ch ◦ϕ Ct)
sf \ (C′h ◦ϕ Ct)

⋆ 6= ∅

Let Cτ be an ASD in ∆. By definition of finitary deduction systems one can
compute from Ch ◦ϕ Ct a finite set Σ of ASDs such that there exists Cσ ∈ Σ and
Cc stutter free such that C′I ≤ CI ◦ Cc. By definition of the ordering there exists
a stutter free derivation Cθ and a set of constants C such that:

openC(Cσ) ◦ Cθ = Cτ ◦ Cc

By hypothesis there exists a connection function ψ such that Cτ ◦ψ (Ch ◦ϕ Ct) is
closed and satisfiable whereas Cτ ◦ψ (C′h ◦ϕ Ct) is closed but not satisfiable. By
Lemma 5 (employed with C = ∅) Cc ◦ (Cτ ◦ψ (Ch ◦ϕ Ct)) is satisfiable whereas,
since Cτ ◦ψ (C′h ◦ϕ Ct) is closed, Cc ◦ (Cτ ◦ψ (C′h ◦ϕ Ct)) is not. By Lemma 5 if
Cσ ∈ C′h

⋆
then so is Cc ◦ (Cτ ◦ψ (C′h ◦ϕ Ct)). Since Cσ ∈ Σ implies Cσ ∈ (Ch ◦ϕ Ct)⋆

we thus have Cσ ∈ (Ch ◦ϕ Ct)⋆ \ (C′h ◦ϕ Ct)
⋆. Thus, if Ch 6⊆ C′h one can guess

(in bounded time) a symbolic derivation Ct and compute a finite Σ of symbolic
derivations that contains one which is not in (C′h ◦ Ct)

⋆.
Conversely it is clear if one such derivation is found then C⋆h 6⊆ C

′
h
⋆. �

As a trivial consequence we obtain the announced theorem.

Theorem 1, p. 21. Symbolic equivalence is decidable for finitary deduction
systems.
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6 Conclusion

We have introduced in this paper the notion of finitary deduction systems, and
proved that symbolic equivalence is decidable for such attacker models. We
believe that definition also captures the essence of lazy intruder techniques that
are employed in many tools. Accordingly, we believe that a practical conse-
quence of this paper will be the inclusion in existing reachability analysis tools
of a symbolic equivalence checking algorithm.

In terms of comparison of expected runtimes for tools currently deciding
reachability, a back-of-the-enveloppe computation for tools employing lazy con-
straint solving techniques such as OFMC [7] and CL-AtSe [36] would be twice
(given that two protocols have to be analyzed and assuming tool is not paral-
lelized) the runtime for safe (since these tools usually stop at the first attack
found, and thus typically have a much shorter running time in these cases) pro-
tocols of a similar size. We refer the interested reader to [36] for more details,
but given that CL-AtSe now implements a concurrent search algorithm and has
been deployed on Amazon’s EC2, we believe that less than 10s for reasonable
industrial protocols is achievable nowadays.
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[31] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with finite
number of sessions is NP-complete. In CSFW, pages 174–. IEEE Computer
Society, 2001.

29
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