25,124 research outputs found

    Multiple Heat Exchangers Simulation Within the Newton-Raphson Framework

    Get PDF
    A general framework is proposed for simulating complex heat exchanger geometries in a manner suitable for sequential solution of the refrigerant- and air-side equations for mass, momentum and energy. The sequential solution enables the algorithm to be applied to a single module of a complex heat exchanger, and then integrated with other modules within a simultaneous equation solver employing a Newton-Raphson approach. This report also describes the integration of component subroutines into system simulation models for air conditioners and refrigerators. The modular approach is illustrated by describing its application to a dual-evaporator refrigerator simulation.Air Conditioning and Refrigeration Project 6

    Blowup Equations for Refined Topological Strings

    Full text link
    G\"{o}ttsche-Nakajima-Yoshioka K-theoretic blowup equations characterize the Nekrasov partition function of five dimensional N=1\mathcal{N}=1 supersymmetric gauge theories compactified on a circle, which via geometric engineering correspond to the refined topological string theory on SU(N)SU(N) geometries. In this paper, we study the K-theoretic blowup equations for general local Calabi-Yau threefolds. We find that both vanishing and unity blowup equations exist for the partition function of refined topological string, and the crucial ingredients are the r\bf r fields introduced in our previous paper. These blowup equations are in fact the functional equations for the partition function and each of them results in infinite identities among the refined free energies. Evidences show that they can be used to determine the full refined BPS invariants of local Calabi-Yau threefolds. This serves an independent and sometimes more powerful way to compute the partition function other than the refined topological vertex in the A-model and the refined holomorphic anomaly equations in the B-model. We study the modular properties of the blowup equations and provide a procedure to determine all the vanishing and unity r\bf r fields from the polynomial part of refined topological string at large radius point. We also find that certain form of blowup equations exist at generic loci of the moduli space.Comment: 85 pages. v2: Journal versio

    Numerical calculation of three-point branched covers of the projective line

    Get PDF
    We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.Comment: 58 pages, 24 figures; referee's comments incorporate

    On computing Belyi maps

    Get PDF
    We survey methods to compute three-point branched covers of the projective line, also known as Belyi maps. These methods include a direct approach, involving the solution of a system of polynomial equations, as well as complex analytic methods, modular forms methods, and p-adic methods. Along the way, we pose several questions and provide numerous examples.Comment: 57 pages, 3 figures, extensive bibliography; English and French abstract; revised according to referee's suggestion

    The Omega deformed B-model for rigid N=2 theories

    Full text link
    We give an interpretation of the Omega deformed B-model that leads naturally to the generalized holomorphic anomaly equations. Direct integration of the latter calculates topological amplitudes of four dimensional rigid N=2 theories explicitly in general Omega-backgrounds in terms of modular forms. These amplitudes encode the refined BPS spectrum as well as new gravitational couplings in the effective action of N=2 supersymmetric theories. The rigid N=2 field theories we focus on are the conformal rank one N=2 Seiberg-Witten theories. The failure of holomorphicity is milder in the conformal cases, but fixing the holomorphic ambiguity is only possible upon mass deformation. Our formalism applies irrespectively of whether a Lagrangian formulation exists. In the class of rigid N=2 theories arising from compactifications on local Calabi-Yau manifolds, we consider the theory of local P2. We calculate motivic Donaldson-Thomas invariants for this geometry and make predictions for generalized Gromov-Witten invariants at the orbifold point.Comment: 73 pages, no figures, references added and typos correcte
    • …
    corecore