2,648 research outputs found

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Usability of an Immersive Augmented Reality Based Telerehabilitation System with Haptics (ARTESH) for Synchronous Remote Musculoskeletal Examination

    Get PDF
    This study describes the features and utility of a novel augmented reality based telemedicine system with haptics that allows the sense of touch and direct physical examination during a synchronous immersive telemedicine consultation and physical examination. The system employs novel engineering features: (a) a new force enhancement algorithm to improve force rendering and overcoming the “just-noticeable-difference” limitation; (b) an improved force compensation method to reduce the delay in force rendering; (c) use of the “haptic interface point” to reduce disparity between the visual and haptic data; and (d) implementation of efficient algorithms to process, compress, decompress, transmit and render 3-D tele-immersion data. A qualitative pilot study (n=20) evaluated the usability of the system. Users rated the system on a 26-question survey using a seven-point Likert scale, with percent agreement calculated from the total users who agreed with a given statement. Survey questions fell into three main categories: (1) ease and simplicity of use, (2) quality of experience, and (3) comparison to in-person evaluation. Average percent agreements between the telemedicine and in-person evaluation were highest for ease and simplicity of use (86%) and quality of experience (85%), followed by comparison to in-person evaluation (58%). Eighty-nine percent (89%) of respondents expressed satisfaction with the overall quality of experience. Results suggest that the system was effective at conveying audio-visual and touch data in real-time across 20.3 miles, and warrants further development.

    Augmented reality and its aspects: a case study for heating systems

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáThanks to the advances of technology in various domains, and the mixing between real and virtual worlds. Allowed this master’s thesis to explore concepts related to virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (XR). The development and comparison of Android applications and Microsoft HoloLens aimed to solve a deadlock in the recognition of instructions by the users. We used an interactive manual of assembly and disassembly for taps of residential heaters. Therefore, this work deals with three main parts. Firstly, the exploration of the concepts of VR, AR, MR, and XR. Secondly, 3D modeling and animations techniques. Finally, the development of applications using Vuforia, Wikitude, and MRTK. The users tried our application “HeaterGuideAR” to verify the effectiveness of the instruction passed by the interactive manual. Only a few users had some difficulties at the beginning of the trials. Thus, it was necessary to provide aid tools. However, other users were able to disassemble the faucet without any external help. We suggest continuing this work with more explorations, models, and situations.Graças aos últimos avanços tecnológicos em diversas áreas deram a possibilidade de fazer a mistura do mundo real com o virtual. É com este intuito que esta tese de mestrado veio expor os conceitos relacionados à realidade virtual (RV), realidade aumentada (RA), realidade mista (RM) e realidade estendida (RE). O desenvolvimento e comparação de aplicativos Android e Microsoft HoloLens teve como objetivo resolver um impasse no entendimento de instruções por parte dos usuários. Utilizamos um manual interativo para montagem e desmontagem de torneiras de aquecedores residenciais. Este trabalho, portanto, lida com três partes principais. Na primeira, a exploração dos conceitos de RV, RA, RM e RE. Na segunda, modelagem 3D e técnicas de animações. E por fim, o desenvolvimento de aplicações usando Vuforia, Wikitude e MRTK. A aplicação “HeaterGuideAR” foi testada pelos usuários afim de verificar a eficácia da instrução passada pelo manual interativo. Apenas alguns usuários tiveram algumas dificuldades no início dos testes. Sendo que, foi necessário fornecer algumas ferramentas de auxílio. Mesmo assim, outros usuários conseguiram desmontar a torneira sem ajuda externa. Sugerimos continuar este trabalho com mais explorações, modelos e situações.Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paran

    Design and Evaluation of a Virtual Reality Game to Improve Physical and Cognitive Acuity

    Get PDF
    Physical and mental health are both integral to healthy living and ageing, and a causal-cum-symbiotic relationship has been observed between the two. Physical and cognitive activities such as exercise and board games are known to promote healthy ageing. In this regard, highly engaging lightboard games are known to improve hand-eye coordination, reflexes, and motor skills for individuals. Immersivity of virtual reality games can transform mundane and repetitive exercise routines into stimulating experiences, and they can be utilized by users to improve physical and cognitive performance from the comfort of their homes. In this study, we adopt design science framework to design, develop and evaluate a VR BATAK lightboard game to improve physical reaction, hand-eye coordination, visual memory and cognitive processing. Based on the findings from evaluation over three phases, we propose three design principles related to accessibility, sensory cueing and cognitive loading, as theoretical and practical contributions of this study

    Interactive Augmented Reality As A Support Tool For Parkinson’s Disease Rehabilitation Programs

    Get PDF
    In this thesis, an augmented reality system is proposed as an alternative to create multiple interactive virtual environments that might later be used in Parkinson’s Disease rehabilitation programs. The main objective of this thesis is to develop a Wearable Tangible Augmented Reality Environment focused on providing the sense of presence required to effectively immerse patients so that they are able to perform different tasks in context–specific scenarios. By using our system, patients are able to freely navigate different virtual environments. Moreover, by segmenting and then overlaying users’ hands and objects of interest above the 3D environment, patients have the ability to naturally interact with both real–life items as well as with virtually augmented objects using nothing but their bare hands. As part of this thesis, Parkinson’s Disease patients participated in a three–week dual– task assessment program in which several tasks were performed following a strict protocol. In order to assess patients’ performance, the tasks were carried out both in the real world and using the system. The findings of this thesis will help evaluate the viability of using augmented reality as an auxiliary tool for Parkinson’s Disease rehabilitation programs

    Games technology: console architectures, game engines and invisible interaction

    Get PDF
    This presentation will look at three core developments in games technology. First we will look at the architectural foundations on which the consoles are built to deliver games performance. Millions of consoles are sold and the console performance is improving in parallel. Next we look at the cutting edge features available in game engines. Middleware software, namely game engines, help developers build games with rich features and also simultaneously harness the power of the game consoles to satisfy gamers. The third part focuses on Invisible Game Interaction. The Nintendo Wii games console was an instant success because of the Wiimote. Old and young alike embraced it. The Microsoft Kinect pushed the boundary even further, where the interaction device is slowly becoming invisible and the human body becomes the interface. Finally, we look at novel research developments that go beyond current game interaction devices

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Differentiation of the Causal Characteristics and Influences of Virtual Reality and the Effects on Learning at a Science Exhibit

    Get PDF
    Within the context of the informal science center, exhibits are the main interface for public learning. Essential to the success of a science center is how well exhibits model effective strategies for learning. Virtual Reality (VR) technology with its flexible, adaptive, multimedia, and immersive-learning capabilities is emerging for use by science centers in exhibits; however, research on learning in virtual environments at exhibits is scarce. To support the future development of VR science exhibits it is critical to investigate VR\u27s pedagogical value and effects on science learning. Research investigated the Smoke & Mirrors VR exhibit at the Reuben H. Fleet Science Center in San Diego, California. Inquiry focused on the interplay between elements of the exhibit\u27s design, assessing the separate and interactive effects of visual imagery, moving images, sound, narration, and interactive tools to differentiate the causal characteristics and influences that enhanced and detracted from learning. Case study methodology was employed utilizing visitor observations and interviews with 14 participants. Findings indicated that realistic visual elements with text were the primary sources of content learning; however, positive results were limited to only a few participants. High cognitive load due to interactive tools; instructional design; and movement of visual images were found to be significant detracting characteristics of participant learning. Other characteristics and influences of VR were also found that directly effected learning. Research results will inform the forthcoming design of a new VR exhibit at the Reuben H. Fleet Science Center and to the design and development of future VR exhibits at informal science centers. A prior brief mixed-methods evaluation of Smoke & Mirrors was conducted in 2003, contributing background to the study and its future implications and strategies

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room
    corecore