40,969 research outputs found

    Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment

    Get PDF
    This is the peer reviewed version of the following article: [García-Blanco, R., Borzacchiello, D., Chinesta, F., and Diez, P. (2017) Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment. Int. J. Numer. Meth. Engng, 111: 529–552. doi: 10.1002/nme.5470], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5470/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The parametric analysis of electric grids requires carrying out a large number of Power Flow computations. The different parameters describe loading conditions and grid properties. In this framework, the Proper Generalized Decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to 1) iterating algebraic solver, 2) number of terms in the separable greedy expansion and 3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal-oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end- user. The paper discusses how to compute the goal-oriented error estimates. This requires linearizing the error equation and the Quantity of Interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems.Peer ReviewedPostprint (author's final draft

    Generic Regular Decompositions for Parametric Polynomial Systems

    Full text link
    This paper presents a generalization of our earlier work in [19]. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in [19] for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in [19]. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in [19] are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.Comment: It is the latest version. arXiv admin note: text overlap with arXiv:1208.611

    On the determination of cusp points of 3-R\underline{P}R parallel manipulators

    Get PDF
    This paper investigates the cuspidal configurations of 3-RPR parallel manipulators that may appear on their singular surfaces in the joint space. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a non-singular change of assembly mode. In previous works, the cusp points were calculated in sections of the joint space by solving a 24th-degree polynomial without any proof that this polynomial was the only one that gives all solutions. The purpose of this study is to propose a rigorous methodology to determine the cusp points of 3-R\underline{P}R manipulators and to certify that all cusp points are found. This methodology uses the notion of discriminant varieties and resorts to Gr\"obner bases for the solutions of systems of equations

    An algebraic method to check the singularity-free paths for parallel robots

    Get PDF
    Trajectory planning is a critical step while programming the parallel manipulators in a robotic cell. The main problem arises when there exists a singular configuration between the two poses of the end-effectors while discretizing the path with a classical approach. This paper presents an algebraic method to check the feasibility of any given trajectories in the workspace. The solutions of the polynomial equations associated with the tra-jectories are projected in the joint space using Gr{\"o}bner based elimination methods and the remaining equations are expressed in a parametric form where the articular variables are functions of time t unlike any numerical or discretization method. These formal computations allow to write the Jacobian of the manip-ulator as a function of time and to check if its determinant can vanish between two poses. Another benefit of this approach is to use a largest workspace with a more complex shape than a cube, cylinder or sphere. For the Orthoglide, a three degrees of freedom parallel robot, three different trajectories are used to illustrate this method.Comment: Appears in International Design Engineering Technical Conferences & Computers and Information in Engineering Conference , Aug 2015, Boston, United States. 201
    • …
    corecore