14,431 research outputs found

    Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters

    Full text link
    The paper develops Newton's method of finding multiple eigenvalues with one Jordan block and corresponding generalized eigenvectors for matrices dependent on parameters. It computes the nearest value of a parameter vector with a matrix having a multiple eigenvalue of given multiplicity. The method also works in the whole matrix space (in the absence of parameters). The approach is based on the versal deformation theory for matrices. Numerical examples are given. The implementation of the method in MATLAB code is available.Comment: 19 pages, 3 figure

    Rational Solutions of the Painlev\'e-II Equation Revisited

    Full text link
    The rational solutions of the Painlev\'e-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlev\'e-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlev\'e-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlev\'e-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method
    corecore