111,626 research outputs found

    Dimension Reduction via Colour Refinement

    Full text link
    Colour refinement is a basic algorithmic routine for graph isomorphism testing, appearing as a subroutine in almost all practical isomorphism solvers. It partitions the vertices of a graph into "colour classes" in such a way that all vertices in the same colour class have the same number of neighbours in every colour class. Tinhofer (Disc. App. Math., 1991), Ramana, Scheinerman, and Ullman (Disc. Math., 1994) and Godsil (Lin. Alg. and its App., 1997) established a tight correspondence between colour refinement and fractional isomorphisms of graphs, which are solutions to the LP relaxation of a natural ILP formulation of graph isomorphism. We introduce a version of colour refinement for matrices and extend existing quasilinear algorithms for computing the colour classes. Then we generalise the correspondence between colour refinement and fractional automorphisms and develop a theory of fractional automorphisms and isomorphisms of matrices. We apply our results to reduce the dimensions of systems of linear equations and linear programs. Specifically, we show that any given LP L can efficiently be transformed into a (potentially) smaller LP L' whose number of variables and constraints is the number of colour classes of the colour refinement algorithm, applied to a matrix associated with the LP. The transformation is such that we can easily (by a linear mapping) map both feasible and optimal solutions back and forth between the two LPs. We demonstrate empirically that colour refinement can indeed greatly reduce the cost of solving linear programs

    Linearizability of Nonlinear Equations on a Quad-Graph by a Point, Two Points and Generalized Hopf-Cole Transformations

    Full text link
    In this paper we propose some linearizability tests of partial difference equations on a quad-graph given by one point, two points and generalized Hopf-Cole transformations. We apply the so obtained tests to a set of nontrivial examples

    Analysis of Boolean Equation Systems through Structure Graphs

    Full text link
    We analyse the problem of solving Boolean equation systems through the use of structure graphs. The latter are obtained through an elegant set of Plotkin-style deduction rules. Our main contribution is that we show that equation systems with bisimilar structure graphs have the same solution. We show that our work conservatively extends earlier work, conducted by Keiren and Willemse, in which dependency graphs were used to analyse a subclass of Boolean equation systems, viz., equation systems in standard recursive form. We illustrate our approach by a small example, demonstrating the effect of simplifying an equation system through minimisation of its structure graph

    Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Get PDF
    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG), a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically

    On the Complexity of the Tiden-Arnborg Algorithm for Unification modulo One-Sided Distributivity

    Full text link
    We prove that the Tiden and Arnborg algorithm for equational unification modulo one-sided distributivity is not polynomial time bounded as previously thought. A set of counterexamples is developed that demonstrates that the algorithm goes through exponentially many steps.Comment: In Proceedings UNIF 2010, arXiv:1012.455

    Path Gain Algebraic Formulation for the Scalar Linear Network Coding Problem

    Full text link
    In the algebraic view, the solution to a network coding problem is seen as a variety specified by a system of polynomial equations typically derived by using edge-to-edge gains as variables. The output from each sink is equated to its demand to obtain polynomial equations. In this work, we propose a method to derive the polynomial equations using source-to-sink path gains as the variables. In the path gain formulation, we show that linear and quadratic equations suffice; therefore, network coding becomes equivalent to a system of polynomial equations of maximum degree 2. We present algorithms for generating the equations in the path gains and for converting path gain solutions to edge-to-edge gain solutions. Because of the low degree, simplification is readily possible for the system of equations obtained using path gains. Using small-sized network coding problems, we show that the path gain approach results in simpler equations and determines solvability of the problem in certain cases. On a larger network (with 87 nodes and 161 edges), we show how the path gain approach continues to provide deterministic solutions to some network coding problems.Comment: 12 pages, 6 figures. Accepted for publication in IEEE Transactions on Information Theory (May 2010
    corecore