15,249 research outputs found

    A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem

    Get PDF
    Genetic algorithms (GA) which belongs to the class of evolutionary algorithms are regarded as highly successful algorithms when applied to a broad range of discrete as well continuous optimization problems. This chapter introduces a hybrid approach combining genetic algorithm with the multilevel paradigm for solving the maximum constraint satisfaction problem (Max-CSP). The multilevel paradigm refers to the process of dividing large and complex problems into smaller ones, which are hopefully much easier to solve, and then work backward toward the solution of the original problem, using the solution reached from a child level as a starting solution for the parent level. The promising performances achieved by the proposed approach are demonstrated by comparisons made to solve conventional random benchmark problems

    Searching the solution space in constructive geometric constraint solving with genetic algorithms

    Get PDF
    Geometric problems defined by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that besides fulfilling the geometric constraints, exhibits some additional properties. Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function. The problem of selecting a given root is known as the Root Identification Problem. In this paper we present a new technique to solve the root identification problem. The technique is based on an automatic search in the space of solutions performed by a genetic algorithm. The user specifies the solution of interest by defining a set of additional constraints on the geometric elements which drive the search of the genetic algorithm. The method is extended with a sequential niche technique to compute multiple solutions. A number of case studies illustrate the performance of the method.Postprint (published version

    Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling

    Get PDF
    Copyright @ 2000 IEEEThis paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.This work was supported by the Chinese National Natural Science Foundation under Grant 69684005 and the Chinese National High-Tech Program under Grant 863-511-9609-003, the EPSRC under Grant GR/L81468

    An improved constraint satisfaction adaptive neural network for job-shop scheduling

    Get PDF
    Copyright @ Springer Science + Business Media, LLC 2009This paper presents an improved constraint satisfaction adaptive neural network for job-shop scheduling problems. The neural network is constructed based on the constraint conditions of a job-shop scheduling problem. Its structure and neuron connections can change adaptively according to the real-time constraint satisfaction situations that arise during the solving process. Several heuristics are also integrated within the neural network to enhance its convergence, accelerate its convergence, and improve the quality of the solutions produced. An experimental study based on a set of benchmark job-shop scheduling problems shows that the improved constraint satisfaction adaptive neural network outperforms the original constraint satisfaction adaptive neural network in terms of computational time and the quality of schedules it produces. The neural network approach is also experimentally validated to outperform three classical heuristic algorithms that are widely used as the basis of many state-of-the-art scheduling systems. Hence, it may also be used to construct advanced job-shop scheduling systems.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and in part by the National Nature Science Fundation of China under Grant 60821063 and National Basic Research Program of China under Grant 2009CB320601

    A genetic algorithm for the partial binary constraint satisfaction problem: an application to a frequency assignment problem

    Get PDF
    We describe a genetic algorithm for the partial constraint satisfaction problem. The typical elements of a genetic algorithm, selection, mutation and cross-over, are filled in with combinatorial ideas. For instance, cross-over of two solutions is performed by taking the one or two domain elements in the solutions of each of the variables as the complete domain of the variable. Then a branch-and-bound method is used for solving this small instance. When tested on a class of frequency assignment problems this genetic algorithm produced the best known solutions for all test problems. This feeds the idea that combinatorial ideas may well be useful in genetic algorithms.Economics ;
    corecore