808,639 research outputs found

    Order of wetting transitions in electrolyte solutions

    Full text link
    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.Comment: Submitte

    The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    Full text link
    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radius of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volum

    Diffusion of solvent from a cast cellulose acetate solution during the formation of skinned membranes

    Get PDF
    The transport of solvent out of a cast cellulose acetate (CA) solution into the coagulation bath during membrane formation is treated as a diffusion process. From the increase of solvent concentration in the bath with time (solvent leaching experiments) an overall solvent diffusion coefficient has been calculated. In size these coefficients compare well to mutual pseudo-binary solvent-non-solvent diffusion coefficients determined by means of a classical boundary broadening method applied to ternary solutions with fixed CA concentration, but with a gradient in solvent-nonsolvent composition. Since binary polymer-solvent interdiffusion coefficients are at least one order of magnitude lower, it is concluded that the diffusion of solvent into the coagulation bath is essentially a pseudo-binary solvent-non-solvent diffusion process. Combination of experimental results with model calculations for the effect of a thin dense skin on the diffusion of solvent out of the sublayer shows that the casting-leaching diffusion coefficient can be used to describe the out-diffusion of solvent from the layer under the skin provided that the relative skin resistance is not too high, or that the skin thickness is small

    Process For Recovering Alcohol With Energy Integration

    Get PDF
    A process for recovering alcohol by a continuous process employing fermentation, solvent extraction of the alcohol product, extractive distillation of the alcohol-solvent extract to provide water fraction and vacuum stripping for separation of the alcohol and regenerated solvent.The solvent is recycled. An isoparaffin is used as a solvent and this solvent can be modified with a long chain fatty acid, alcohol or fatty alcohol or long-chain esters. Alternatively, many modifiers may be used neat.Georgia Tech Research Corporatio

    The mechanism of formation of microporous or skinned membranes produced by immersion precipitation

    Get PDF
    Cellulose acetate and polysulfone casting solutions were coagulated in water/solvent mixtures with differing solvent content. Precipitation in pure water yielded skinned membranes. Precipitation in water/solvent mixtures with solvent concentration exceeding a certain minimum value (which is different for different systems) resulted in microporous membranes. This phenomenon has been explained in terms of the model description for the formation of asymmetric membranes as adopted in our laboratory. In this model, the skin formation is related to gelation and the formation of the porous substructure to liquid—liquid phase separation.\ud \ud It is made plausible that the addition of solvent to the coagulation bath favours non-solvent inflow and hence liquid—liquid demixing in the precipitating film

    Critical Casimir forces and colloidal aggregation: A numerical study

    Full text link
    We present a numerical study of the effective potential VeffV_\mathrm{eff} between two hard-sphere colloids dispersed in a solvent of interacting particles, for several values of temperature and solvent density, approaching the solvent gas-liquid critical point. We investigate the stability of a system of particles interacting via VeffV_\mathrm{eff} to evaluate the locus of colloidal aggregation in the solvent phase-diagram, and its dependence on the colloid size. We assess how the excluded volume depletion forces are modified by solvent attraction and discuss under which conditions solvent critical fluctuations, in the form of critical Casimir forces, can be used to effectively manipulate colloidal aggregation

    The structure of fluids with impurities

    Full text link
    The influence of dilute impurities on the structure of a fluid solvent is investigated theoretically. General arguments, which do not rely on particular models, are used to derive an extension of the Ornstein-Zernike form for the solvent structure factor at small scattering vectors. It is shown that dilute impurities can influence the solvent structure only if they are composed of ions with significantly different sizes. Non-ionic impurities or ions of similar size are shown to not alter the solvent structure qualitatively. This picture is compatible with available experimental data. The derived form of the solvent structure factor is expected to be useful to infer information on the impurity-solvent interactions form measured scattering intensities
    • …
    corecore