1,098,000 research outputs found
Recommended from our members
Structure variation and evolution in microphase-separated grafted diblock copolymer films
The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent
The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures
We investigate local phase transitions of the solvent in the neighborhood of
a solvophobic polymer chain which is induced by a change of the polymer-solvent
repulsion and the solvent pressure in the bulk solution. We describe the
polymer in solution by the Edwards model, where the conditional partition
function of the polymer chain at a fixed radius of gyration is described by a
mean-field theory. The contributions of the polymer-solvent and the
solvent-solvent interactions to the total free energy are described within the
mean-field approximation. We obtain the total free energy of the solution as a
function of the radius of gyration and the average solvent number density
within the gyration volume. The resulting system of coupled equations is solved
varying the polymer-solvent repulsion strength at high solvent pressure in the
bulk. We show that the coil-globule (globule-coil) transition occurs
accompanied by a local solvent evaporation (condensation) within the gyration
volum
Demixing of colloid-polymer mixtures in poor solvents
The influence of poor solvent quality on fluid demixing of a model mixture of
colloids and nonadsorbing polymers is investigated using density functional
theory. The colloidal particles are modelled as hard spheres and the polymer
coils as effective interpenetrating spheres that have hard interactions with
the colloids. The solvent is modelled as a two-component mixture of a primary
solvent, regarded as a background theta-solvent for the polymer, and a
cosolvent of point particles that are excluded from both colloids and polymers.
Cosolvent exclusion favors overlap of polymers, mimicking the effect of a poor
solvent by inducing an effective attraction between polymers. For this model, a
geometry-based density functional theory is derived and applied to bulk fluid
phase behavior. With increasing cosolvent concentration (worsening solvent
quality), the predicted colloid-polymer binodal shifts to lower colloid
concentrations, promoting demixing. For sufficiently poor solvent, a reentrant
demixing transition is predicted at low colloid concentrations.Comment: 6 pages, 3 figure
Critical Casimir forces and colloidal aggregation: A numerical study
We present a numerical study of the effective potential
between two hard-sphere colloids dispersed in a solvent of interacting
particles, for several values of temperature and solvent density, approaching
the solvent gas-liquid critical point. We investigate the stability of a system
of particles interacting via to evaluate the locus of
colloidal aggregation in the solvent phase-diagram, and its dependence on the
colloid size. We assess how the excluded volume depletion forces are modified
by solvent attraction and discuss under which conditions solvent critical
fluctuations, in the form of critical Casimir forces, can be used to
effectively manipulate colloidal aggregation
Solvent Mediated Assembly of Nanoparticles Confined in Mesoporous Alumina
The controlled self-assembly of thiol stabilized gold nanocrystals in a
mediating solvent and confined within mesoporous alumina was probed in situ
with small angle x-ray scattering. The evolution of the self-assembly process
was controlled reversibly via regulated changes in the amount of solvent
condensed from an undersaturated vapor. Analysis indicated that the
nanoparticles self-assembled into cylindrical monolayers within the porous
template. Nanoparticle nearest-neighbor separation within the monolayer
increased and the ordering decreased with the controlled addition of solvent.
The process was reversible with the removal of solvent. Isotropic clusters of
nanoparticles were also observed to form temporarily during desorption of the
liquid solvent and disappeared upon complete removal of liquid. Measurements of
the absorption and desorption of the solvent showed strong hysteresis upon
thermal cycling. In addition, the capillary filling transition for the solvent
in the nanoparticle-doped pores was shifted to larger chemical potential,
relative to the liquid/vapor coexistence, by a factor of 4 as compared to the
expected value for the same system without nanoparticles.Comment: 9 pages, 9 figures, appeared in Phys. Rev.
Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. © 2008 Vazquez et al
Application of the level-set method to the implicit solvation of nonpolar molecules
A level-set method is developed for numerically capturing the equilibrium
solute-solvent interface that is defined by the recently proposed variational
implicit solvent model (Dzubiella, Swanson, and McCammon, Phys. Rev. Lett. {\bf
104}, 527 (2006) and J. Chem.\Phys. {\bf 124}, 084905 (2006)). In the level-set
method, a possible solute-solvent interface is represented by the zero
level-set (i.e., the zero level surface) of a level-set function and is
eventually evolved into the equilibrium solute-solvent interface. The evolution
law is determined by minimization of a solvation free energy {\it functional}
that couples both the interfacial energy and the van der Waals type
solute-solvent interaction energy. The surface evolution is thus an energy
minimizing process, and the equilibrium solute-solvent interface is an output
of this process. The method is implemented and applied to the solvation of
nonpolar molecules such as two xenon atoms, two parallel paraffin plates,
helical alkane chains, and a single fullerene . The level-set solutions
show good agreement for the solvation energies when compared to available
molecular dynamics simulations. In particular, the method captures solvent
dewetting (nanobubble formation) and quantitatively describes the interaction
in the strongly hydrophobic plate system
- …
