24 research outputs found

    Robust Mean Square Stability of Open Quantum Stochastic Systems with Hamiltonian Perturbations in a Weyl Quantization Form

    Full text link
    This paper is concerned with open quantum systems whose dynamic variables satisfy canonical commutation relations and are governed by quantum stochastic differential equations. The latter are driven by quantum Wiener processes which represent external boson fields. The system-field coupling operators are linear functions of the system variables. The Hamiltonian consists of a nominal quadratic function of the system variables and an uncertain perturbation which is represented in a Weyl quantization form. Assuming that the nominal linear quantum system is stable, we develop sufficient conditions on the perturbation of the Hamiltonian which guarantee robust mean square stability of the perturbed system. Examples are given to illustrate these results for a class of Hamiltonian perturbations in the form of trigonometric polynomials of the system variables.Comment: 11 pages, Proceedings of the Australian Control Conference, Canberra, 17-18 November, 2014, pp. 83-8

    Joint unmixing-deconvolution algorithms for hyperspectral images

    Get PDF
    International audienceThis paper combines supervised linear unmixing and deconvolution problems to increase the resolution of the abundance maps for industrial imaging systems. The joint unmixing-deconvolution (JUD) algorithm is introduced based on the Tikhonov regularization criterion for offline processing. In order to meet the needs of industrial applications, the proposed JUD algorithm is then extended for online processing by using a block Tikhonov criterion. The performance of JUD is increased by adding a non-negativity constraint which is implemented in a fast way using the quadratic penalty method and fast Fourier transform. The proposed algorithm is then assessed using both simulated and real hyperspectral images

    Efficient Approaches for Enclosing the United Solution Set of the Interval Generalized Sylvester Matrix Equation

    Full text link
    In this work, we investigate the interval generalized Sylvester matrix equation AXB+CXD=F{\bf{A}}X{\bf{B}}+{\bf{C}}X{\bf{D}}={\bf{F}} and develop some techniques for obtaining outer estimations for the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator which causes reducing computational complexity to cubic, compared to Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of A{\bf{A}}, B{\bf{B}}, C{\bf{C}} and D{\bf{D}} and in both of them we suppose that the midpoints of A{\bf{A}} and C{\bf{C}} are simultaneously diagonalizable as well as for the midpoints of the matrices B{\bf{B}} and D{\bf{D}}. Some numerical experiments are given to illustrate the performance of the proposed methods

    The automatic solution of partial differential equations using a global spectral method

    Full text link
    A spectral method for solving linear partial differential equations (PDEs) with variable coefficients and general boundary conditions defined on rectangular domains is described, based on separable representations of partial differential operators and the one-dimensional ultraspherical spectral method. If a partial differential operator is of splitting rank 22, such as the operator associated with Poisson or Helmholtz, the corresponding PDE is solved via a generalized Sylvester matrix equation, and a bivariate polynomial approximation of the solution of degree (nx,ny)(n_x,n_y) is computed in O((nxny)3/2)\mathcal{O}((n_x n_y)^{3/2}) operations. Partial differential operators of splitting rank 3\geq 3 are solved via a linear system involving a block-banded matrix in O(min(nx3ny,nxny3))\mathcal{O}(\min(n_x^{3} n_y,n_x n_y^{3})) operations. Numerical examples demonstrate the applicability of our 2D spectral method to a broad class of PDEs, which includes elliptic and dispersive time-evolution equations. The resulting PDE solver is written in MATLAB and is publicly available as part of CHEBFUN. It can resolve solutions requiring over a million degrees of freedom in under 6060 seconds. An experimental implementation in the Julia language can currently perform the same solve in 1010 seconds.Comment: 22 page

    Two-sided Grassmann-Rayleigh quotient iteration

    Full text link
    The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix CC. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of pp-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right pp-dimensional invariant subspaces of CC. Moreover, Grassmannian versions of the Rayleigh quotient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian eigenproblem.Comment: The text is identical to a manuscript that was submitted for publication on 19 April 200
    corecore