1,511 research outputs found

    Enhanced independent vector analysis for audio separation in a room environment

    Get PDF
    Independent vector analysis (IVA) is studied as a frequency domain blind source separation method, which can theoretically avoid the permutation problem by retaining the dependency between different frequency bins of the same source vector while removing the dependency between different source vectors. This thesis focuses upon improving the performance of independent vector analysis when it is used to solve the audio separation problem in a room environment. A specific stability problem of IVA, i.e. the block permutation problem, is identified and analyzed. Then a robust IVA method is proposed to solve this problem by exploiting the phase continuity of the unmixing matrix. Moreover, an auxiliary function based IVA algorithm with an overlapped chain type source prior is proposed as well to mitigate this problem. Then an informed IVA scheme is proposed which combines the geometric information of the sources from video to solve the problem by providing an intelligent initialization for optimal convergence. The proposed informed IVA algorithm can also achieve a faster convergence in terms of iteration numbers and better separation performance. A pitch based evaluation method is defined to judge the separation performance objectively when the information describing the mixing matrix and sources is missing. In order to improve the separation performance of IVA, an appropriate multivariate source prior is needed to better preserve the dependency structure within the source vectors. A particular multivariate generalized Gaussian distribution is adopted as the source prior. The nonlinear score function derived from this proposed source prior contains the fourth order relationships between different frequency bins, which provides a more informative and stronger dependency structure compared with the original IVA algorithm and thereby improves the separation performance. Copula theory is a central tool to model the nonlinear dependency structure. The t copula is proposed to describe the dependency structure within the frequency domain speech signals due to its tail dependency property, which means if one variable has an extreme value, other variables are expected to have extreme values. A multivariate student's t distribution constructed by using a t copula with the univariate student's t marginal distribution is proposed as the source prior. Then the IVA algorithm with the proposed source prior is derived. The proposed algorithms are tested with real speech signals in different reverberant room environments both using modelled room impulse response and real room recordings. State-of-the-art criteria are used to evaluate the separation performance, and the experimental results confirm the advantage of the proposed algorithms

    Enhanced IVA for audio separation in highly reverberant environments

    Get PDF
    Blind Audio Source Separation (BASS), inspired by the "cocktail-party problem", has been a leading research application for blind source separation (BSS). This thesis concerns the enhancement of frequency domain convolutive blind source separation (FDCBSS) techniques for audio separation in highly reverberant room environments. Independent component analysis (ICA) is a higher order statistics (HOS) approach commonly used in the BSS framework. When applied to audio FDCBSS, ICA based methods suffer from the permutation problem across the frequency bins of each source. Independent vector analysis (IVA) is an FD-BSS algorithm that theoretically solves the permutation problem by using a multivariate source prior, where the sources are considered to be random vectors. The algorithm allows independence between multivariate source signals, and retains dependency between the source signals within each source vector. The source prior adopted to model the nonlinear dependency structure within the source vectors is crucial to the separation performance of the IVA algorithm. The focus of this thesis is on improving the separation performance of the IVA algorithm in the application of BASS. An alternative multivariate Student's t distribution is proposed as the source prior for the batch IVA algorithm. A Student's t probability density function can better model certain frequency domain speech signals due to its tail dependency property. Then, the nonlinear score function, for the IVA, is derived from the proposed source prior. A novel energy driven mixed super Gaussian and Student's t source prior is proposed for the IVA and FastIVA algorithms. The Student's t distribution, in the mixed source prior, can model the high amplitude data points whereas the super Gaussian distribution can model the lower amplitude information in the speech signals. The ratio of both distributions can be adjusted according to the energy of the observed mixtures to adapt for different types of speech signals. A particular multivariate generalized Gaussian distribution is adopted as the source prior for the online IVA algorithm. The nonlinear score function derived from this proposed source prior contains fourth order relationships between different frequency bins, which provides a more informative and stronger dependency structure and thereby improves the separation performance. An adaptive learning scheme is developed to improve the performance of the online IVA algorithm. The scheme adjusts the learning rate as a function of proximity to the target solutions. The scheme is also accompanied with a novel switched source prior technique taking the best performance properties of the super Gaussian source prior and the generalized Gaussian source prior as the algorithm converges. The methods and techniques, proposed in this thesis, are evaluated with real speech source signals in different simulated and real reverberant acoustic environments. A variety of measures are used within the evaluation criteria of the various algorithms. The experimental results demonstrate improved performance of the proposed methods and their robustness in a wide range of situations

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Full text link
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate Gaussian distributed, the conventional principal component analysis (PCA) cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    Online source separation in reverberant environments exploiting known speaker locations

    Get PDF
    This thesis concerns blind source separation techniques using second order statistics and higher order statistics for reverberant environments. A focus of the thesis is algorithmic simplicity with a view to the algorithms being implemented in their online forms. The main challenge of blind source separation applications is to handle reverberant acoustic environments; a further complication is changes in the acoustic environment such as when human speakers physically move. A novel time-domain method which utilises a pair of finite impulse response filters is proposed. The method of principle angles is defined which exploits a singular value decomposition for their design. The pair of filters are implemented within a generalised sidelobe canceller structure, thus the method can be considered as a beamforming method which cancels one source. An adaptive filtering stage is then employed to recover the remaining source, by exploiting the output of the beamforming stage as a noise reference. A common approach to blind source separation is to use methods that use higher order statistics such as independent component analysis. When dealing with realistic convolutive audio and speech mixtures, processing in the frequency domain at each frequency bin is required. As a result this introduces the permutation problem, inherent in independent component analysis, across the frequency bins. Independent vector analysis directly addresses this issue by modeling the dependencies between frequency bins, namely making use of a source vector prior. An alternative source prior for real-time (online) natural gradient independent vector analysis is proposed. A Student's t probability density function is known to be more suited for speech sources, due to its heavier tails, and is incorporated into a real-time version of natural gradient independent vector analysis. The final algorithm is realised as a real-time embedded application on a floating point Texas Instruments digital signal processor platform. Moving sources, along with reverberant environments, cause significant problems in realistic source separation systems as mixing filters become time variant. A method which employs the pair of cancellation filters, is proposed to cancel one source coupled with an online natural gradient independent vector analysis technique to improve average separation performance in the context of step-wise moving sources. This addresses `dips' in performance when sources move. Results show the average convergence time of the performance parameters is improved. Online methods introduced in thesis are tested using impulse responses measured in reverberant environments, demonstrating their robustness and are shown to perform better than established methods in a variety of situations

    Robust variational Bayesian clustering for underdetermined speech separation

    Get PDF
    The main focus of this thesis is the enhancement of the statistical framework employed for underdetermined T-F masking blind separation of speech. While humans are capable of extracting a speech signal of interest in the presence of other interference and noise; actual speech recognition systems and hearing aids cannot match this psychoacoustic ability. They perform well in noise and reverberant free environments but suffer in realistic environments. Time-frequency masking algorithms based on computational auditory scene analysis attempt to separate multiple sound sources from only two reverberant stereo mixtures. They essentially rely on the sparsity that binaural cues exhibit in the time-frequency domain to generate masks which extract individual sources from their corresponding spectrogram points to solve the problem of underdetermined convolutive speech separation. Statistically, this can be interpreted as a classical clustering problem. Due to analytical simplicity, a finite mixture of Gaussian distributions is commonly used in T-F masking algorithms for modelling interaural cues. Such a model is however sensitive to outliers, therefore, a robust probabilistic model based on the Student's t-distribution is first proposed to improve the robustness of the statistical framework. This heavy tailed distribution, as compared to the Gaussian distribution, can potentially better capture outlier values and thereby lead to more accurate probabilistic masks for source separation. This non-Gaussian approach is applied to the state-of the-art MESSL algorithm and comparative studies are undertaken to confirm the improved separation quality. A Bayesian clustering framework that can better model uncertainties in reverberant environments is then exploited to replace the conventional expectation-maximization (EM) algorithm within a maximum likelihood estimation (MLE) framework. A variational Bayesian (VB) approach is then applied to the MESSL algorithm to cluster interaural phase differences thereby avoiding the drawbacks of MLE; specifically the probable presence of singularities and experimental results confirm an improvement in the separation performance. Finally, the joint modelling of the interaural phase and level differences and the integration of their non-Gaussian modelling within a variational Bayesian framework, is proposed. This approach combines the advantages of the robust estimation provided by the Student's t-distribution and the robust clustering inherent in the Bayesian approach. In other words, this general framework avoids the difficulties associated with MLE and makes use of the heavy tailed Student's t-distribution to improve the estimation of the soft probabilistic masks at various reverberation times particularly for sources in close proximity. Through an extensive set of simulation studies which compares the proposed approach with other T-F masking algorithms under different scenarios, a significant improvement in terms of objective and subjective performance measures is achieved
    • …
    corecore