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Abstract

Independent vector analysis (IVA) is studied as a frequency domain blind

source separation method, which can theoretically avoid the permutation

problem by retaining the dependency between different frequency bins of the

same source vector while removing the dependency between different source

vectors. This thesis focuses upon improving the performance of independent

vector analysis when it is used to solve the audio separation problem in a

room environment.

A specific stability problem of IVA, i.e. the block permutation problem,

is identified and analyzed. Then a robust IVA method is proposed to solve

this problem by exploiting the phase continuity of the unmixing matrix.

Moreover, an auxiliary function based IVA algorithm with an overlapped

chain type source prior is proposed as well to mitigate this problem.

Then an informed IVA scheme is proposed which combines the geometric

information of the sources from video to solve the problem by providing an in-

telligent initialization for optimal convergence. The proposed informed IVA

algorithm can also achieve a faster convergence in terms of iteration numbers

and better separation performance. A pitch based evaluation method is de-

fined to judge the separation performance objectively when the information

describing the mixing matrix and sources is missing.

In order to improve the separation performance of IVA, an appropri-

ate multivariate source prior is needed to better preserve the dependency

structure within the source vectors. A particular multivariate generalized
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Gaussian distribution is adopted as the source prior. The nonlinear score

function derived from this proposed source prior contains the fourth order

relationships between different frequency bins, which provides a more infor-

mative and stronger dependency structure compared with the original IVA

algorithm and thereby improves the separation performance.

Copula theory is a central tool to model the nonlinear dependency struc-

ture. The t copula is proposed to describe the dependency structure within

the frequency domain speech signals due to its tail dependency property,

which means if one variable has an extreme value, other variables are ex-

pected to have extreme values. A multivariate student’s t distribution con-

structed by using a t copula with the univariate student’s t marginal distri-

bution is proposed as the source prior. Then the IVA algorithm with the

proposed source prior is derived.

The proposed algorithms are tested with real speech signals in different

reverberant room environments both using modelled room impulse response

and real room recordings. State-of-the-art criteria are used to evaluate the

separation performance, and the experimental results confirm the advantage

of the proposed algorithms.
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ŝ Estimated source signal vector

x Mixture signal vector

µ Mean vector

Σ Covariance matrix

Λ Diagonal matrix

A Permutation adjustment matrix

G Overall system matrix

H Mixing matrix

W Estimated unmixing matrix

Qw Whitening matrix

c(.) Copula density function

C(.) Copula

F (.) Nonlinear function for FastIVA

F (.)′ First derivative of nonlinear function for FastIVA

F (.)′′ Second derivative of nonlinear function for FastIVA

g(.) Contrast function for AuxIVA

J(.) Cost function

Q(.) Auxiliary function for AuxIVA



List of Figures

1.1 Machine cocktail party problem: to build an intelligent ma-

chine which can duplicate some aspects of the human auditory

system to solve the cocktail party problem through micro-

phones and video measurements. 27

2.1 Diagram of instantaneous mixing with three sources and three

measurements. 38

2.2 Diagram of convolutive mixing with three sources and three

measurements. 38

2.3 The mixture model of independent vector analysis. Indepen-

dent component analysis is extended to a formulation with

multidimensional variables, where the mixing process is con-

strained to the sources on the same horizontal layer. 46

2.4 The two dimensional pdf for the independent Laplacian source

prior. 49

2.5 The two dimensional pdf for the multivariate super-Gaussian

source prior adopted by original IVA. 50

2.6 Separation performance of original FastICA Method: perfor-

mance index at each frequency bin for the original FastICA

method at the top and evaluation of permutation at the bottom. 55

17



LIST OF FIGURES 18

2.7 Separation performance of Parra’s Method: performance in-

dex at each frequency bin for Parra’s method at the top and

evaluation of permutation at the bottom. 56

2.8 Separation performance of IVA method: performance index at

each frequency bin for IVA method at the top and evaluation

of permutation at the bottom. 57

2.9 Separation performance of adaptive step size IVA method:

performance index at each frequency bin for ASS-IVA method

at the top and evaluation of permutation at the bottom. 58

2.10 Convergence comparison between IVA and ASS-IVA. The solid

line is the convergence of IVA, and the asterisk line is the con-

vergence of ASS-IVA. 59

3.1 Example of the block permutation problem of IVA. 72

3.2 Separation performance by using original IVA. 78

3.3 Phase difference by using orginal IVA. 78

3.4 Separation performance by using robust IVA. 79

3.5 Phase difference by using robust IVA. 79

3.6 Separation performance by using original IVA. 81

3.7 Phase difference by using orginal IVA. 81

3.8 Separation performance by using robust IVA. 82

3.9 Phase difference by using robust IVA. 82

3.10 Average SDR and SIR comparison. 83

3.11 The permutation measurement showing the block permuta-

tion problem by using AuxIVA. 88



LIST OF FIGURES 19

3.12 The permutation measurement without the block permuta-

tion problem by using AuxIVA with the proposed dependency

model. 89

4.1 Block diagram of the audio video based fast fixed-point inde-

pendent vector analysis. Video localization is based on face

and head detection. The visual location of each speaker is ap-

proximated after processing the 2-D image information and

obtained from at least two synchronized colour video cameras

through calibration parameters and an optimization method.

The position of the microphone array and the output of the

visual localizer are used to calculate the direction of arrival

information of each speaker. Based on this information, a

smart initialization is set for the FastIVA algorithm. 97

4.2 The pitch tracks of two mixture signals. 99

4.3 The pitch tracks of two separated signals. 100

4.4 Separation performance of FastIVA. The upper part is the

performance index figure, and the bottom part is the permu-

tation measurement figure. 102

4.5 Separation performance of AVIVA. The upper part is the per-

formance index figure, and the bottom part is the permutation

measurement figure. 103

4.6 One permutation measurement of the separation result for

three sources when using FastIVA. 104

4.7 One permutation measurement of the separation result for

three sources when using AVIVA. 105



LIST OF FIGURES 20

4.8 Separation performance of FastIVA in the noisy environment.

The upper part is the performance index figure, and the bot-

tom part is the permutation measurement figure. 107

4.9 Separation performance of AVIVA in the noisy environment.

The upper part is the performance index figure, and the bot-

tom part is the permutation measurement figure. 108

4.10 SDR comparison in different reverberant environments. 109

4.11 SIR comparisons in different reverberant environments. 110

4.12 Room environment for one of the AV16.3 corpus recordings.

A single video frame from camera 1. 111

4.13 Room environment for one of the AV16.3 corpus recordings.

A single video frame from camera 2. 112

4.14 The pitch tracks of the mixed signals. 113

4.15 The pitch tracks of the separated signals by FastIVA. 113

4.16 The pitch tracks of the separated signals by AVIVA. 114

5.1 Second order inter-frequency relationships for the speech sig-

nal “si1010.wav”, x and y dimensions correspond to frequency

bins 1 to 128 of 512. 121

5.2 Fourth order inter-frequency relationships for the speech sig-

nal “si1010.wav”, x and y dimensions correspond to frequency

bins 1 to 128 of 512. 122

5.3 Plan view of the experiment setting in the room environment

with two microphones and two sources 126

5.4 SDR comparison between original and proposed IVA algo-

rithms as a function of reverberation time. 129



LIST OF FIGURES 21

5.5 SIR comparison between original and proposed IVA algorithms

as a function of reverberation time. 129

5.6 SDR comparison between original and proposed FastIVA al-

gorithms as a function of reverberation time. 130

5.7 SIR comparison between original and proposed FastIVA algo-

rithms as a function of reverberation time. 131

5.8 SDR comparison between original and proposed AuxIVA al-

gorithms as a function of reverberation time. 132

5.9 SIR comparison between original and proposed AuxIVA algo-

rithms as a function of reverberation time. 133

6.1 The copula density of a t copula with 4 degrees of freedom

and correlation coefficient ρ = 0.7 138

6.2 The copula density of a t copula with 4 degrees of freedom

and correlation coefficient ρ = −0.6 139

6.3 The copula density of a t copula with 4 degrees of freedom

and correlation coefficient ρ = 0 139

6.4 The scatter plot of two independent random variables. 141

6.5 The Chi-plot of two independent random variables. 142

6.6 The scatter plot of two random variables with a t copula,

ρ = −0.6 and v = 4 143

6.7 The Chi-plot of two random variables with a t copula, ρ =

−0.6 and v = 4 144

6.8 The scatter plot of two random variables with a t copula,

ρ = 0 and v = 2 145

6.9 The Chi-plot of two random variables with a t copula, ρ = 0

and v = 2 146



LIST OF FIGURES 22

6.10 The Chi-plot of two frequency bins of a speech signal “sa1.wav”

from TIMIT dataset (a) 50th and 51th frequency bins (b) 50th

and 55th frequency bins (c) 50th and 60th frequency bins (d)

50th and 100th frequency bins (e) 50th and 200th frequency

bins (b) 50th and 500th frequency bins 147

6.11 The probability density function of a multivariate student’s t

distribution 148

6.12 The separation performance in different reverberant environ-

ment for mixtures 1 (a) SDR (b) SIR 152

6.13 The separation performance in different reverberant environ-

ment for mixtures 2 (a) SDR (b) SIR 153

6.14 The separation performance in different reverberant environ-

ment for mixtures 3 (a) SDR (b) SIR 154

6.15 The separation performance in different reverberant environ-

ment for mixtures 4 (a) SDR (b) SIR 155

6.16 The separation performance in different reverberant environ-

ment for mixtures 5 (a) SDR (b) SIR 156

6.17 The time-varying pitch tracks of the mixtures 158

6.18 The time-varying pitch tracks of the separated signals by using

IVA algorithm with proposed source prior 159



List of Tables

2.1 SIR comparison 59

3.1 SDR and SIR comparison of the first experiment. 80

3.2 SDR and SIR comparison of the second experiment. 83

3.3 Separation performance comparison when there is no block

permutation problem. 89

4.1 Separation performance comparison when block permutation

problem happens 105

4.2 Separation performance comparison in noisy environment. 107

4.3 Separation performance for the real room recordings. 111

5.1 Separation performance comparison in SDR(dB) 127

5.2 Separation performance comparison in SIR(dB) 127

5.3 Separation performance comparison in terms of SDR and SIR

measures in dB 130

5.4 Separation performance comparison in terms of SDR and SIR

measures in dB 131

6.1 Separation performance comparison in SDR 150

6.2 Separation performance comparison in SIR 150

23



LIST OF TABLES 24

6.3 Separation rate comparison when using real room recordings 158



Chapter 1

INTRODUCTION

1.1 Cocktail Party Problem

“One of our most important faculties is our ability to listen to, and follow,

one speaker in the presence of others. This is such a common experience that

we may take it for granted; we may call it “the cocktail party problem”. No

machine has been constructed to do just this, to filter out one conversation

from a number jumbled together” - Colin Cherry [1].

The cocktail party problem (CPP) was first proposed by Colin Cherry in

1953 [1], and further researched in [2]. The problem describes the situation

that there are several people talking simultaneously in a room environment,

and the target is to focus on one of them. For human beings, it is easy to

focus with increased attention. However, for a machine, it is much more

difficult to achieve this goal. The solution for the cocktail party problem is

to design a method to focus on the desired speech while suppress or ignore

all the other competing speech sounds.

During the past decades, much effort has been put on solving the cock-

tail party problem. The target is to design a machine which can imitate the

auditory capability of humans. However, this target hasn’t been realized

because a complete understanding of the cocktail party phenomenon is still

missing, and the human auditory perception capability is not fully under-

stood. Actually, it is not necessary to duplicate the whole human auditory

system to achieve this target. But it is still useful and helpful to better

25
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understand the processing used by a human [3].

To address the cocktail party problem, three neural processes have been

identified: analysis, recognition and synthesis.

The analysis process mainly involves segmentation or segregation, which

means that it can segregate an incoming auditory signal to individual chan-

nels. The spatial location information is used by the listener to segregate the

signals. If the sounds are coming from the same location, they are grouped

together. While if they are originated from different directions, they are

segregated.

The recognition process means analyzing the statistical characteristic

contained in a sound stream, which is very useful in recognizing the sound

patterns. The target of recognition is to establish the neurobiological mecha-

nisms which are used by humans to identify a segregated sound from multiple

streams.

The synthesis process indicates the reconstruction of individual sound

waveforms from the separated sound streams. This process plays an impor-

tant role in the human auditory system [4]. Thus the synthesis problem is

highly related to the machine cocktail party problem.

From the description of the three processes, it is clear that the recognition

doesn’t need a perfect analysis process, meanwhile the synthesis doesn’t

need perfect analysis or recognition either. The synthesis process can be

considered as the inverse process of the combination of the analysis and

recognition process. It can deal with the received convolved mixtures and

extract the desired speech. This process needs further research to be fully

understood.

During the last two decades, the increase in computing power has mo-

tivated researchers to attempt to produce a real time solution such as [5].

Meanwhile, video information is also combined to help to solve the cocktail

party problem as represented in Figure 1.1 [6].
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Figure 1.1. Machine cocktail party problem: to build an intelligent
machine which can duplicate some aspects of the human auditory sys-
tem to solve the cocktail party problem through microphones and video
measurements.

1.2 Blind Source Separation

Attempts to solve the machine cocktail party problem have come from the

signal processing community in the form of blind source separation (BSS)

and generally from the computer science community in the form of computa-

tional auditory scene analysis (CASA) [7, 8]. CASA is motivated by under-

standing human auditory scene analysis. Recently, the combination of BSS

and CASA has also been proposed to improve separation performance [9,10].

The focus of this thesis is on signal processing based approaches such as blind

source separation.

Blind source separation (BSS) has been proposed for various fields in re-

cent years [11]. It is used to extract individual signals from observed mixed

signals. It can be potentially used in communication systems, biomedical

signal processing and image restoration. In the communication field, it is a

promising tool for the design of multi-input multi-output (MIMO) equalizers

for suppression of intersymbol interference, cochannel and adjacent channel

interference and multi-access interference. In biomedical signal processing,
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BSS can be used to process electrocardiography (ECG), electroencephalogra-

phy (EEG), electromyography (EMG) and magnetoencephalograph (MEG)

signals. In the image signal processing field, it can be used for image restora-

tion and understanding [12] [13]. While this thesis concentrates upon its use

in the cocktail party problem, namely solving the speech separation problem

in a real room environment. It can also help to improve the performance of

speech recognition by suppressing other competitive sounds and thereby en-

hance human-computer interface systems, such as the Siri system developed

by the Apple company [14].

To address the BSS problem, many methods have been proposed. Her-

ault and Jutten seem to have been the first who addressed the problem of

blind source separation in 1985 [15]. The mixtures are assumed to be in-

stantaneous in the standard BSS problem, which means that the sound is

transmitted directly from the sources to the microphones without any delay.

Comon established an instantaneous linear mixing model and clearly defined

the term independent component analysis (ICA) in 1994 [16].

However, the instantaneous model is not suitable for solving the real

environment cocktail party problem, because the instantaneous model is too

simple to describe the complicated real room environment. For a real room

environment, the acoustic sources take multiple paths to the microphone

sensors instead of the direct path. Thus, the convolutive model is used to

represent the practical situation. There are two types of mixing model which

exist in the convolutive case, namely anechoic and echoic. The anechoic

mixing model simply describes the transmission delays between the sources

and sensors, while the echoic mixing model pays more attention to the delays

and also the reverberations of the sources. This thesis is mainly concerned

with the echoic mixture model due to its use for representing a real room

environment and it also includes the anechoic model as a special case. In

convolutive BSS, each element of the mixing filter is in fact a linear filter to
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describe the multipaths from sources to sensors.

In a real room environment, the length of the room impulse response is

typically on the order of thousands of samples. Thus, time domain methods

are generally not suitable for the CBSS problem due to the computational

complexity [17]. In order to reduce the computational cost, frequency do-

main methods have been proposed [18]. The convolution operation in the

time domain becomes multiplication in the frequency domain, so the com-

putational cost reduces significantly [17]. When the mixtures are transferred

into the frequency domain by using the discrete Fourier transform (DFT),

the ICA method can be used in each frequency bin to separate the mixtures.

Transformation into the frequency domain reduces the computational

cost, but there are two indeterminacies which are inherent to ICA, namely

the scaling and permutation ambiguities. The scaling ambiguities across fre-

quencies can be managed by matrix normalization [12,19–22]. On the other

hand, the permutation ambiguity inherent to ICA is magnified due to the

potential misalignment of the separated source at different frequency bins.

In this case, should the separated results be transformed back to the time do-

main, the separation performance will be poor. Therefore, different methods

to mitigate the permutation problem have been proposed [17]. In [18] the

permutation problem is addressed by imposing a smoothness constraint on

the mixing filter. The smoothing essentially forces the estimated sources in

the frequency bins to align and is achieved by constraining the filter length in

the time domain to be less than the block length of the DFT. Another kind

of method exploits the special spectral structure contained in speech signals.

Murata et al. used this kind of method to eliminate the cross-correlation of

the reconstructed signals [23]. Localization information is added to help to

constrain the signals in [24]. Sawada et al. [25] proposed a method to solve

the permutation problem by integrating earlier approaches, direction of ar-

rival and inter-frequency correlation of signal envelopes. Naqvi et al. [6] used
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a multimodal approach to solve the permutation problem, which uses both

audio and video information. Most of them needs pre or post processing by

using extra information. For instance, source geometry is estimated first to

help to solve the permutation problem in [24]. In [23] [26], the source struc-

ture is further exploited after separation stage to address the permutation

problem. However, both pre and post processing generally introduce system

delay and additional complexity.

Independent vector analysis (IVA) was proposed by Kim et al. around

2007 [27, 28]. It can theoretically avoid the permutation problem by retain-

ing the inter-frequency dependency within each source vector while removing

the dependency between different source vectors [5,27]. Thus, IVA can mit-

igate the permutation problem during the convergence process without any

requirement for additional information such as geometrical information. For

ICA, the nonlinear score function is a univariate function. However, IVA

adopts a multivariate score function to preserve the dependency between

different frequency bins. Thus, IVA can use the data across all the fre-

quency bins to separate the mixture in each individual frequency bin. There

are three main types of IVA methods. The first one is the original NG-IVA,

which adopts the Kullback-Leibler divergence between the joint probability

density function and the product of marginal probability density functions

of the individual source vectors as the cost function. The natural gradient

method is used to minimize the cost function [27]. The second type is the

fast fixed-point IVA (FastIVA), which adopts Newton’s method to optimize

the cost function to achieve a fast convergence in terms of the iteration num-

bers [29]. The third one is auxiliary function based IVA (AuxIVA), which is

also a fast form of IVA. AuxIVA can converge quickly without introducing

tuning parameters and can guarantee that the objective function decreases

monotonically by using the auxiliary function technique [30]. Some other

IVA methods based on these frameworks are proposed to exploit the source
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activity and dynamic structure to achieve better separation performance

such as [31] [32].

The core idea of IVA is to preserve the dependency within each source

vector, and the nature of the multivariate nonlinear score function plays an

important role in this process [27]. The multivariate nonlinear score func-

tion is derived from the multivariate source prior, therefore an appropriate

multivariate source prior is needed to improve the separation performance.

Original IVA algorithms adopt a multivariate Laplacian distribution as the

source prior, which is a spherically symmetric distribution and implies the

dependency between different frequency bins is all the same. However, the

dependencies between frequency bins could be variable. In order to describe

the dependency structure better, a chain-like overlapped source prior has

been adopted [33]. Similarly, a harmonic structure dependency model has

been proposed recently [34]. The Gaussian mixture model (GMM) is also

adopted as the source prior, which can model different kinds of signals and

make IVA more applicable for different signals [35] [36]. All the above source

priors assume the covariance matrix is a diagonal matrix due to the orthogo-

nal Fourier basis, which implies that there is no correlation between different

frequency bins. More recently, in the context of time domain signals, the

correlations across datasets are introduced to improve the separation perfor-

mance. An IVA algorithm based upon a multivariate Gaussian source prior

has been proposed to introduce second order correlations in the time domain,

which is suitable for an application with large second order correlations such

as in functional magnetic resonance imaging studies [37]. For the frequency

domain IVA algorithms, other correlation information should be exploited.
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1.3 Aim and Objectives

For original IVA algorithm, there are several weaknesses. First of all, the

step size is fixed which constrains the convergence speed. Secondly, IVA is

not stable due to the block permutation problem. Thirdly, the dependency

model could be improved to achieve a better separation performance. The

overall aim of the study is to overcome these weaknesses and enhance the

separation performance of IVA. The particular objectives are:-

• Objective 1: improve the convergence speed of natural gradient IVA

In Chapter 2, the adaptive step size technique is applied to propose an

adaptive step size IVA, which can select the optimal step size automatically

to achieve a faster convergence in terms of iteration number compared with

the original natural gradient IVA.

• Objective 2: improve the robustness of IVA in terms of the block

permutation problem

In Chapter 3, the block permutation problem of IVA is highlighted, then

the phase continuity of the unmixing matrix is exploited to propose a robust

IVA algorithm. Moreover, the overlapped chain type source prior is applied

to auxiliary function based IVA to obtain a robust separation performance.

• Objective 3: improve the separation performance by designing a novel

source prior motivated by the nonlinear coupling in frequency domain

speech signals

The source prior is important for IVA, because the nonlinear function de-

rived from the source prior is used to preserve the dependency within each

source vector. In Chapter 4, a particular multivariate generalized Gaus-

sian distribution is adopted as the source prior, and the resultant nonlinear

score function contains fourth order cross items to exploit the relationships
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between different frequency bins. In Chapter 5, a multivariate student’s t

distribution constructed by a t copula is proposed as the source prior, which

can better model the nonlinear dependency structure within the frequency

domain speech signals and thereby improve the separation performance.

In the early chapters, Sawada’s dataset is used to test the proposed al-

gorithms, they are from “http://www.kecl.ntt.co.jp/icl/signal/sawada”. In

the later chapters, the advantage of the proposed algorithms are further

confirmed by introducing the widely used TIMIT dataset [38] and real room

recordings from the AV16.3 corpus [39].

1.4 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 firstly provides the fundamentals of frequency domain blind

source separation. There are two kinds of solution scheme. The first one is

based on using second order statistics (SOS) due to the nonstationarity of the

speech signals. The second kind of solution is based on exploiting the higher

order statistics (HOS) of the signals. The typical second kind of solution is

ICA. ICA is introduced followed by three other basic IVA algorithms, i.e.

the natural gradient IVA, the fast fixed-point IVA and auxiliary function

based IVA. In the section related to natural gradient IVA, the adaptive step

size natural gradient IVA is also proposed and compared with the original

natural gradient IVA.

Chapter 3 focuses on the stability of IVA algorithms. The specific stabil-

ity problem of IVA, i.e. “the block permutation problem”, is described, and

the reason for it is also analyzed. Two robust IVA solutions are proposed

in this chapter. The first solution exploits the continuity of the unmixing

matrix and adjusts the misalignment to obtain a robust separation. The

second solution adopts an overlapped chain like source prior to mitigate this
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problem. The first solution is tested when using natural gradient IVA, and

the second solution is tested when using the auxiliary function based IVA.

Both of them can provide a robust separation performance.

In Chapter 4, the informed IVA is proposed, which combines prior infor-

mation, i.e. the geometric information of the sources captured by video, with

the FastIVA algorithm. One advantage of the informed IVA is using smart

initialization to overcome the problems in convergence due to the nature of

the cost function, such as the presence of local minima. It can also achieve

faster convergence and improved separation performance. The informed IVA

is tested by using real room recordings, and a pitch based objective evalua-

tion method is also proposed to judge the separation performance when the

information describing the mixing matrix and sources is missing.

In Chapter 5, a particular multivariate generalized Gaussian distribution

is proposed to be the source prior for IVA. The nonlinear score function de-

rived from this proposed source prior contains the fourth order relationships

between different frequency bins, which can provide a more informative and

stronger dependency structure, and thereby improve the separation perfor-

mance. The proposed source prior can fit into all three IVA frameworks,

and the experimental results confirm the advantage of this proposed source

prior.

In Chapter 6, copula theory is introduced to model the dependency struc-

ture of the frequency domain speech signals. Then a multivariate student’s t

distribution is constructed by using a t copula with the univariate student’s

t marginal distribution. The proposed source prior can properly describe

the nonlinear dependency structure within frequency domain speech signals.

The natural gradient IVA algorithm with the multivariate student’s t dis-

tribution is proposed and tested not only by different simulated reverberant

room environments but also by real room recordings. The separation per-

formance can be improved by using the IVA algorithm with the proposed
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source prior.

Finally, conclusions are drawn, and future work is then discussed in

Chapter 7.



Chapter 2

FUNDAMENTALS OF

INDEPENDENT VECTOR

ANALYSIS

2.1 Introduction

The speech separation problem in a real room environment is a convolutive

blind source separation (CBSS) problem, which is often addressed in the

frequency domain. Two kinds of approaches to solve this problem will be

reviewed, namely the second order statistic (SOS) method and higher order

statistic (HOS) method. For the second order statistic methods, the statisti-

cal non-stationarity of the speech signals is exploited to separate the mixed

speech signals. On the other hand, for the higher order statistic methods,

the non-Gaussianity of the speech signals is used to address this problem.

Independent component analysis is the typical higher order statistic method,

which will also be reviewed in this chapter. Independent vector analysis is

an extension of independent component analysis to avoid theoretically the

permutation problem inherent to ICA by exploiting the dependency within

each source vector. There are three main types of IVA algorithms which

will be reviewed in this chapter. The first one is the natural gradient IVA,

which adopts the natural gradient method to minimize the objective func-

36
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tion. An adaptive step size natural gradient IVA algorithm is proposed to

satisfy the first objective of this thesis, i.e. improving the convergence speed

in terms of iteration numbers compared with natural gradient IVA. The sec-

ond one is fast fixed-point IVA which adopts Newton’s method to optimize

the objective function. The last one is the auxiliary function based IVA,

which uses the auxiliary function technique to achieve a fast form of the

IVA method in terms of the convergence iterations. Next, convolutive blind

source separation is introduced.

2.2 Convolutive Blind Source Separation

The basic blind source separation model assumes the mixing matrix is an

instantaneous case, which means the signals are mixed instantaneously, i.e

the microphones pick up only scaled mixtures of the original sources. Figure

2.1 shows an example of instantaneous mixing. For the case of three sources

and three microphones:


x1

x2

x3

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33

×


s1

s2

s3

 (2.2.1)

where x1, x2 and x3 are the three measured mixtures captured by the micro-

phones; s1, s2 and s3 are the three sources, any time dependency is omitted

in this equation. The elements hij of the mixing matrix are scalar values

representing a change in amplitude only.

Practically, perfectly instantaneous mixtures of sounds are seldom en-

countered. For the practical cocktail party problem in a real room envi-

ronment, the observed signals received by the microphones are convolutive

mixtures of source signals because of the reverberant environment. There-

fore, it becomes the convolutive blind source separation problem. Figure 2.2

shows an example of convolutive mixing.
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Sources Observations
Mixing matrix H

S 1

S  2

S 3

X1

X2

X3

Figure 2.1. Diagram of instantaneous mixing with three sources and
three measurements.

S 1

S 2

S 3

X1

X2

X3

Figure 2.2. Diagram of convolutive mixing with three sources and
three measurements.

For a CBSS problem, the noise free relationship between the sources and

observations in the time domain is defined as:

xj(t) =
N∑
i=1

l−1∑
τ=0

hij(τ)si(t− τ) (2.2.2)

where si(t) is the i-th source of all N sources, and xj(t) denotes the j-th

mixture of all M mixtures; hij(t) is the room impulse response between them
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which has l length in time, and t denotes the time sample index.

2.3 Second Order Statistic Solution to CBSS

During the past decades, there has been considerable research performed in

the field of CBSS [17]. Initially, research was aimed at solutions based in

the time domain. In a real room environment, however, where the impulse

response is on the order of thousands of samples in length, the time domain

algorithm would be computationally very expensive to separate the sources.

To overcome this problem, a solution in the frequency domain was proposed

by Parra and Spence [18]. As convolution in the time domain corresponds

to multiplication in the frequency domain provided the block length of the

transform is substantially larger than the length of the time domain filter, the

transformation into the frequency domain converts the convolutive mixing

problem to that of independent complex instantaneous mixing operations

at each frequency bin. Time domain signals xi(t) are converted into the

frequency domain time series signals xi(k,m) by a T -point window discrete

Fourier transform, where k denotes the frequency index and m denotes the

time block index. Thus the frequency domain blind source separation (FD-

BSS) method reduces the computational cost greatly.

The noise free model for frequency domain convolutive blind source sep-

aration problem can be described as:

x(k,m) = H(k)s(k,m) (2.3.1)

where s(k,m) = [s1(k,m), . . . , sN (k,m)]T is the source vector for the k-th

frequency bin and x(k,m) = [x1(k,m), . . . , xM (k,m)]T is the mixture vector

for the k-th frequency bin, and [·]T denotes the transpose operator; H(k) is

the mixing matrix in the k-th frequency bin. The target is to find the unmix-

ing matrix W (k) and unmixed signals ŝ(k,m) = [ŝ1(k,m), . . . , ŝN (k,m)]T at
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each frequency bin, which are calculated as

ŝ(k,m) = W (k)x(k,m) (2.3.2)

Parra and Spence proposed a method which utilizes second order statis-

tic by exploiting the non-stationarity of speech in 2000 [18]. This method

works in the frequency domain and adopts a joint signalization approach.

Then least squares optimization is used to estimate the unmixing matrix as

well as the signal power. The gradient descent algorithm is used to jointly

diagonalize the unmixing matrix W (k) for all the frequency bins by min-

imizing the sum-squared error (as the sum of off diagonal elements of the

covariance matrix of the estimated sources). The unmixing matrix W (k) is

found across all the frequency bins from

Rŝ(k, td) = W (k)Rx(k, td)W
†(k) (2.3.3)

= W (k)H(k)Λs(k, td)H
†(k)W †(k)

where [·]† denotes the Hermitian transpose. Λs(k, td) is a diagonal covariance

matrix describing the source signals and is assumed to be a distinct diagonal

matrix for each time block td
1 , and Rx(k, td) is the covariance matrix of

x(k, td). The covariance matrices are estimated using an averaged cross-

power spectrum

R̂x(k, td) =
1

L

L−1∑
n=1

x(w, td + nT )x†(k, td + nT ) (2.3.4)

The cost function Jm based on the off-diagonal elements of Rŝ(k, td)

estimated at td = dTL, d = 1, 2, . . . , D, with D being the number of matrices

to diagonalize, is

1The index m is not used in order that the calculation of the time block index
can be described.
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Jm =

T∑
k=1

D∑
d=1

∥E(k, td)]∥2F (2.3.5)

where E(k, td) = W (k)R̂x(k, td)W
†(k) − Λs(k, td), and ∥.∥2F is the squared

Frobenius norm. To avoid the trivial W (k) = 0 ∀k solutions, the constant

diag(W (k)) = I ∀k is applied, where diag(·) denotes taking the diagonal

elements to construct a diagonal matrix. To minimize (2.3.5) the method of

steepest descent is applied to yield

∂Jm
∂W ∗(k)

= 2
D∑

d=1

E(k, td)W (k)R̂x(k, td) (2.3.6)

where (·)∗ denotes the conjugate operators, and the update equation for

W (k) becomes

Wi+1(k) = Wi(k)− η
D∑

d=1

E(k, td)Wi(k)Rx(k, td) (2.3.7)

where i and η are the iteration index and learning rate respectively. The

unmixing filter matrix W (k) is updated for all the frequency bins. The

source covariance matrix can be estimated at each iteration by Λ̂s(k, td) =

diag(W (k)Rx(k, td)W
†(k)). A higher order statistic approach is next con-

sidered.

2.4 Independent Component Analysis

“ICA (independent component analysis) is a statistical and computational

technique for revealing hidden factors that underlie sets of random variables,

measurements, or signals. ICA defines a generative model for the observed

multivariate data, which is typically given as a large database of samples.

In the model, the data variables are assumed to be linear mixtures of some

unknown latent variables, and the mixing system is also unknown. The

latent variables are assumed non-Gaussian and mutually independent, and
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they are called the independent components of the observed data. These

independent components, also called sources or factors, can be found by

ICA.” pp. xvii, [19]. ICA is superficially related to principal component

analysis and factor analysis. ICA is a much more powerful technique, how-

ever, capable of finding the underlying factors or sources when these classical

methods fail completely. In order to make ICA work, some assumptions are

necessary [40].

• The source components are assumed to be statistically independent of

each other.

According to the mathematical definition of independence, variables are

independent if and only if the joint probability density function (pdf) is

factorizable in the following way:

p(s1, · · · , sN ) =

N∏
i=1

p(si)

• At most one source has Gaussian distribution.

ICA works by exploiting the higher order statistic of the signals. How-

ever, the higher order cumulants of a Gaussian distribution are zero. Thus,

ICA is essentially impossible if all the sources are Gaussian signals.

• The unknown mixing matrix is assumed to be invertible.

In other words, it assumes the number of sources is equal to or smaller

than the number of mixtures, i.e. an exactly determined or over-determined

problem. However, this assumption can be relaxed if other information such

as the time frequency representation of the sources is exploited [41].

There are several kinds of independent component analysis methods.

The first one is ICA by maximization of non-Gaussianity. The measurement

of non-Gaussianity can be the kurtosis or the negentropy which is introduced
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from information theory [19]. The second one is ICA by maximum likelihood

estimation. The last one is ICA by minimization of mutual information [19].

The motivation of this approach is that it may not be very realistic in many

cases to assume that the data follows the ICA model. Therefore, an ap-

proach that does not assume anything about the data is needed. A general-

purpose measure of the dependence of the components of a random vector

is used, then ICA can be defined as a linear decomposition that minimizes

that dependence measure. Such an approach can be developed using mu-

tual information, which is a well-motivated information-theoretic measure of

statistical dependence.

However, ICA does have two ambiguities. The first of which is called

the scaling ambiguity, namely the variances (energy) of the independent

components are not necessarily matched to the original sources. The reason

is that, both s and H being unknown, any scalar multiplier applied to one

of the sources si could always be canceled by dividing the corresponding

column hi of H by the same non zero scalar:

x =
∑
i

(
1

α
hi)(αsi)

In order to address this problem, the most usual way is to standardize

the independent components to have unit variance.

The second ambiguity is the permutation ambiguity, which means the

order of the independent components can not be determined. The reason is

again as both s and H are unknown, the order of the terms can be exchanged

without losing the restored independence. When ICA based methods are

used to address the CBSS problem in the frequency domain to reduce the

computational load of the time domain solution, the permutation ambiguity

is magnified because the alignment is different for each individual frequency

bin. Many solutions have been proposed to solve the permutation problem
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as discussed in Chapter 1.

The statistical independence implies the uncorrelated sources, but the

reverse is not necessarily true. Most ICA algorithms decorrelate the mixtures

via spatial whitening, before optimizing their separating objective contrast

or cost functions. This spatial whitening is achieved by employing principal

component analysis (PCA).

In the context of BSS, principal component analysis seeks to remove

the cross-correlation between the observed signals, and ensures that they

have unit variance [19]. PCA operates by finding the projections of the

mixture data on orthogonal directions of maximum variance. A zero mean

vector z containing observations from spatially distinct locations is said to

be spatially white if

E[zzT ] = I (2.4.1)

where E[·] is the statistical expectation operator, and I is the identity matrix.

The unmixing matrix W can be decomposed into two components as:

W = UwQw (2.4.2)

where Qw denotes the whitening matrix and Uw is the rotation matrix [19].

The whitening matrix Qw can be formulated as:

Qw = D
− 1

2
x ET

x (2.4.3)

where Ex is the matrix whose columns are the unit-norm eigenvectors of

the spatial covariance matrix Cx = ExDxE
T
x and Dx is the diagonal ma-

trix of the eigenvalues of Cx. The matrix D
− 1

2
x plays an important role in

E[zzT ] = I and it is also important to note that the whitening matrix Qw is

not unique because it can be pre-multiplied by an orthogonal matrix to ob-

tain another version of Qw. In order to overcome the permutation problem
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algorithmically, a new algorithm is considered.

2.5 Independent Vector Analysis

For traditional frequency domain methods, ICA is applied to separate the

mixture at each frequency bin individually. However, the alignment of the

separated signals is not consistent across all the frequency bins. Independent

vector analysis was proposed as a frequency domain blind source separation

method around 2007 [27, 28]. It is designed theoretically to avoid the per-

mutation problem inherent to ICA by retaining the dependency within each

individual source vector, while removing the dependency between different

source vectors.

Independent vector analysis is based on the ICA method with some mod-

ifications. It exploits a dependency model capturing interfrequency depen-

dencies, which is represented diagrammatically in Fig 2.3 for the case of

two sources and two measurements. In this diagram, each horizontal slice

corresponds to a single discrete frequency and the vertical shaded regions

represent the interfrequency dependencies between the sources, whilst the

horizontal shaded regions are the intra-frequency dependencies introduced

by the mixing process.

Compared with ICA methods, the interfrequency dependencies depend

on a modified model for the source signal prior. In the conventional ICA

based algorithms, the source signal prior is defined independently at each

frequency, while the IVA method uses higher order dependencies across

frequencies. The IVA method defines each source prior as a multivariate

super-Gaussian distribution. Thus, it can be used to preserve the higher

order interfrequency dependencies and structures of frequency components.

Moreover, the permutation problem can be avoided and leads to an improved

separation performance [27].
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Figure 2.3. The mixture model of independent vector analysis. Inde-
pendent component analysis is extended to a formulation with multi-
dimensional variables, where the mixing process is constrained to the
sources on the same horizontal layer.

In order to solve the CBSS problem by IVA, the short time Fourier

transform (STFT) is applied to transfer the problem into the frequency

domain to avoid the heavy computational load of time domain operation.

The basic noise free frequency domain BSS model has been described in

equation (2.3.1), and the time index is omitted here for convenience:

x(k) = H(k)s(k) (2.5.1)

The index k = 1, 2, . . . ,K denotes the k-th frequency bin, and K is the

number of frequency bins. H(k) is the mixing matrix at k-th frequency bin,

whose dimension is M ×N .

In order to solve this problem and recover the source signals from the

mixtures, an unmixng matrix must be determined to obtain the estimated

sources
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ŝ(k) = W (k)x(k) (2.5.2)

where ŝ(k) = [ŝ1(k), ŝ2(k), . . . , ŝn(k)]
T is the estimated signal vector in the

frequency domain, and W (k) is the unmixing matrix at the k-th frequency

bin, whose dimension is N×M . In this thesis, most of the time it is assumed

that the number of sources is the same as the number of microphones, i.e.

M = N .

The cost function for IVA is the Kullback-Leibler divergence between the

joint probability density function p(ŝ1 . . . ŝN ) and the product of marginal

probability density functions of the individual source vectors
∏
p(ŝi) [27].

J = KL
(
p(ŝ1 . . . ŝN )||

∏
p(ŝi)

)
=

∫
p(ŝ1 · · · ŝN ) log

p(ŝ1 · · · ŝN )∏
p(ŝi)

dŝ1 · · · dŝN

= const−
K∑
k=1

log |det(W (k))| −
N∑
i=1

E[log p(ŝi)]

(2.5.3)

where det(·) is the matrix determinant operator and | · | denotes the absolute

value. The source prior p(ŝi) is different from traditional ICA methods

because it is a vector across all frequency bins instead of the product of source

prior of each frequency bin
∏K

k=1 p(si(k)). Therefore, when the cost function

is minimized, the dependency between different source vectors would be

removed but the dependency between the components within each vector is

preserved.

2.5.1 Natural Gradient IVA

The cost function for this optimization problem has been defined in (2.5.3),

from which the natural gradient IVA is derived straightforwardly by applying

the natural gradient method to minimize the cost function and update the

unmixing matrix as:
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W (k)new = W (k)old + η∆W (k) (2.5.4)

where η is the step size, and ∆W is derived from the cost function, and then

multiplied by W (k)†W (k) to use the natural gradient [27].

∆W (k) =
(
I − E[φ(k)(ŝ)ŝ∗(k)]

)
W (k) (2.5.5)

The term φ(k)(ŝ) is the nonlinear score function vector

φ(k)(ŝ) = [φ(k)(ŝ1), · · · , φ(k)(ŝN )]T (2.5.6)

and

φ(k)(ŝi) = −
∂ log p(ŝi)

∂ŝi(k)
(2.5.7)

which is a multivariate function and is used to retain dependency across the

frequency bins. Because it is derived from the source prior, it is important to

establish an appropriate multivariate source prior to preserve the dependency

structure and achieve a good separation performance.

In traditional BSS approaches, the univariate Laplacian distribution is

often adopted as the source prior. Suppose that the source prior of a vector

is an independent Laplacian source prior in each frequency, thus, the source

prior vector can be written as

p(si) =

K∏
k=1

p(si(k)) ∝
K∏
k=1

exp
(
− |si(k)− µi(k)|

σi(k)

)
(2.5.8)

where µi(k) and σi(k) are the mean and standard deviation of the i-th signal

at the k-th frequency bin respectively. The two dimensional pdf for this

source prior is shown in Fig 2.4.

Assuming zero mean and unit variance, the nonlinear score function can
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Figure 2.4. The two dimensional pdf for the independent Laplacian
source prior.

be derived according to equation (2.5.7)

φ(k)(ŝi(1) · · · ŝi(K)) =
ŝi(k)

|ŝi(k)|
(2.5.9)

which is a univariate function, because it only contains a single variable

ŝi(k), which can not keep the dependency within the source vector. Thus a

dependent source prior is needed, and the elements of which are modelled

as dependent with each other.

For the original IVA algorithm, a dependent multivariate super-Gaussian

distribution is adopted as the dependent source prior, which takes the form

p(si) ∝ exp
(
−

√
(si − µi)†Σ

−1
i (si − µi)

)
(2.5.10)

where µi and Σ−1
i are respectively the mean vector and inverse covariance
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matrix of the i-th source. The two dimensional pdf for this source prior is

shown in Fig 2.5. The product of the marginal probability density functions

is not equal to the joint probability density function [27], which indicates

the elements in the source vector are dependent with each other.
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Figure 2.5. The two dimensional pdf for the multivariate super-
Gaussian source prior adopted by original IVA.

This distribution can be related to a multivariate Gaussian with a fixed

mean and a variable variance

si = γ1/2ξi + µi (2.5.11)

where γ is a scalar random variable, and ξi is a K-dimensional random

variable which has Gaussian distribution with zero mean and covariance

matrix Σi
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p(ξi) ∝ exp
(
−

ξ†iΣ
−1
i ξi
2

)
(2.5.12)

Suppose that γ obeys a Gamma distribution as follows:

p(γ) ∝ γ1/2 exp
(
− γ

2

)
(2.5.13)

Thus the original source prior can be achieved by integrating joint dis-

tribution of si and γ over γ as follows:

p(si) =

∫ ∞

0
p(si|γ)p(γ)dγ

= α1

∫ ∞

0
γ1/2 exp

(
− 1

2

((si − µi)
†Σ−1

i (si − µi)

γ
+ γ

))
dγ

= α2 exp
(
−

√
(si − µi)†Σ

−1
i (si − µi)

)
(2.5.14)

where α1 and α2 are normalization terms. This indicates that there is vari-

ance dependency generated by γ.

The nonlinear score function can be derived according to the source

prior. It is assumed that the mean vector is a zero vector and the covariance

matrix is a diagonal matrix due to the orthogonality of the Fourier bases,

which implies that each frequency bin sample is uncorrelated with the others.

As such, the nonlinear score function to extract the i-th source at the k-th

frequency bin can be obtained as:

φ(k)(ŝi(1) . . . ŝi(K)) = −
∂ log

(
p(ŝi(1) . . . ŝi(K)

)
∂ŝi(k)

=
∂

√∑K
k′=1

∣∣∣ ŝi(k′)σi(k′)

∣∣∣2
∂ŝi(k)

=
ŝi(k)

σi(k)

√∑K
k′=1

∣∣∣ ŝi(k′)σi(k′)

∣∣∣2
(2.5.15)

This is a multivariate function, and the dependency between the frequency

bins is thereby accounted for in learning.

As for the scaling problem, original IVA uses the minimal distortion
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principle method to adjust the learned unmixing matrix [42], because nat-

ural signals are generally dynamic and nonstationary and the variance isn’t

known. Having designed the learning algorithm, the unmixing matrix is an

arbitrary version of the exact one, which is given by

W (k) = A(k)H−1(k) (2.5.16)

where A(k) is an arbitrary diagonal matrix. Therefore, the unmixing matrix

can be updated as

W (k)← diag
(
W−1(k)

)
W (k). (2.5.17)

Improving the convergence of the algorithm is next considered.

2.5.2 Adaptive Step Size Natural Gradient IVA

It is highlighted that the original IVA method above uses a fixed step to

update the separating matrix. However, a fixed step update has its own

shortcomings, such as relative slow convergence speed, poor tracking ability

and relatively poor separation performance. Thus, an adaptive step size

algorithm for the IVA method is derived here. The frequency index k is

omitted for convenience. The update rule for each frequency is as follows:

W (t′ + 1) = W (t′) + η(t′)∆W (t′) (2.5.18)

where t′ is the iteration index. The step size variation should be correlated

with the change in the estimated cost function. When the change is large,

which means the algorithm is in the early stage of learning, and high con-

vergence speed is needed, the step size should be relatively large. When

the change is small, which means the algorithm is approaching steady state,

and accuracy should be considered more, so the step size should be reduced.
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Based on the discussion above, the update for the step size [43] is:

η(t′) = η(t′ − 1)− θ∇ηJ(t
′)|η=η(t′−1) (2.5.19)

where θ is a small positive constant, and J(t) is the instantaneous estimate

of the cost function from which IVA is derived. To proceed, an inner product

of matrices is defined in [44] as:

⟨D1, D2⟩ = tr(DT
1 D2) (2.5.20)

where ⟨·⟩ denotes the inner product, tr(·) represents the trace operator. D1

and D2 are two matrices. Thus, the gradient term of the step size update is

derived as follows:

∇ηJ(t
′)|η=η(t′−1) =

⟨ ∂J(t′)

∂W (t′)
,

∂W (t′)

∂η(t′ − 1)

⟩
= tr

( ∂J(t′)

∂W (t′)

T ∂W (t′)

∂η(t′ − 1)

) (2.5.21)

where ∂J(t′)/∂W (t′) = −∆W (t′) is simply the update of the separating

matrix. Due to the separating matrix update equation (2.5.18),

∂W (t′)

∂η(t′ − 1)
= ∆W (t′ − 1) (2.5.22)

Thus, the gradient term of the step size update is obtained:

∇ηJ(t
′)|η=η(t′−1) = −tr(∆W (t′)T∆W (t′ − 1)) (2.5.23)

Finally, the adaptive step size IVA algorithm is described as follows:

W (t′ + 1) = W (t′) + η(t′)∆W (t′) (2.5.24)

η(t′) = η(t′ − 1) + θtr(∆W (t′)T∆W (t′ − 1)) (2.5.25)
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An illustrative experiment is shown to indicate that the IVA algorithm

can mitigate the permutation problem, and the separation performance is

compared with second order statistic method, i.e. Parra’s method. Then

the adaptive step size natural gradient IVA is used to separate the mixtures

and compared with the original natural gradient IVA algorithm to show the

advantage.

In the experiments, two real recorded speech signals are used as the data

set, and a two-input two-output system model is established. The dimension

of the simulated room is 5m× 5m× 5m, and the reverberation time RT60 is

130ms. The sources are assumed to be positioned at [2, 3.1, 1.5] and [3.25,

3.25, 1.5], and the microphones at [2.48, 4.5, 1.5] and [2.52, 4.5, 1.5], relative

to the reference of the room, which is the corner. The length of the short

time Fourier transform T = 1024 samples. The sampling frequency is 8kHZ,

thus the length of STFT is 128ms. The initial step size η = 0.1. The initial

value of the separation matrix W is an identity matrix, and θ is chosen as

2× 10−7.

The separation performance is evaluated in terms of two aspects: the sep-

aration evaluation and the convergence performance. In the BSS field, two

typical criteria for the separation performance are the signal-to-interference

ratio (SIR) and performance index (PI).

The SIR criterion is commonly used in the signal processing field, which

indicates the purity of a signal. The calculation of SIR used here is [21]:

SIR = 10 log10

∑
k

∑
i |Hii(k)|2⟨|si(k)|2⟩∑

k

∑
i ̸=j |Hij(k)|2⟨|sj(k)|2⟩

(2.5.26)

where Hii and Hij denote the diagonal and off-diagonal elements of the fre-

quency domain mixing filter, and si is the frequency domain representation

of the source of interest.

The PI criterion is widely used in the blind source separation field. It is
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calculated at each frequency bin and is based on the overall system matrix

G = WH, where matrix W is the obtained unmixing matrix (the k index

is dropped here for convenience in presentation). The PI is described as

follows [12]:

PI(G) = [
1

N

N∑
i=1

(

M∑
j=1

|Gij |
maxj |Gij |

−1)]+[
1

M

M∑
j=1

(

N∑
i=1

|Gij |
maxi|Gij |

−1)] (2.5.27)

where Gij is the ij-th element of matrix G. Although PI can show the

separation performance in each frequency bin, it can not show the per-

mutation directly. Thus, for a two-input two-output model, a criterion

[abs(G11G22) − abs(G12G21)] is used to measure the permutation [21], it

is called permutation measurement (PM) in this thesis.
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Figure 2.6. Separation performance of original FastICA Method: per-
formance index at each frequency bin for the original FastICA method
at the top and evaluation of permutation at the bottom.

In the first simulation, the mixed signals are separated by the original

FastICA method with random initialization [45]. The PI and evaluation of
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permutation are shown in Fig 2.6, the frequency bin range [0,512] corre-

sponds to [0, 4000]Hz as the sampling frequency is 8kHz. The PI is approxi-

mately zero in many frequency bins, which shows that the FastICA method

can separate the mixed signals well at most frequency bins. The poor be-

havior at low frequencies can be explained by the inter-microphone spacing

which is 4cm, whereas at high frequencies it is due to low energy in the

speech signals, and these effects are common for all algorithms. However,

the PI is insensitive to the permutation problem; PM is not always greater

than zero, which indicates there is a permutation problem, and the sepa-

ration is degenerate. This simulation is used to show that the separation

performance can be poor due to the permutation problem, even when the

performance index is small in the majority of frequencies.
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Figure 2.7. Separation performance of Parra’s Method: performance
index at each frequency bin for Parra’s method at the top and evalua-
tion of permutation at the bottom.

In the second simulation, the same mixed signals are separated by Parra’s

method [18]. The PI and permutation evaluation by using this method are
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shown in Fig 2.7. Although it can separate the signals, the performance is

not very good, because the PI in each frequency bin is not close to zero,

which means the mixed signal is not separated very well; PM are all greater

than zero except at some low frequencies and some high frequencies, which

means it can mitigate the permutation problem but not in every frequency

bin.
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Figure 2.8. Separation performance of IVA method: performance
index at each frequency bin for IVA method at the top and evaluation
of permutation at the bottom.

In the third simulation, the same mixed signals are separated by the orig-

inal natural gradient IVA method [27]. The PI and permutation evaluation

are shown in Fig 2.8. PI is approximately zero in almost every frequency,

which means it can separate the mixed signals in almost every frequency. It

shows that the proposed method can separate the mixed signals very well;

PM are all greater than zero in each frequency bin, which indicates it can

solve the permutation problem better than Parra’s method. Thus, it is ob-

vious that the IVA method performs better than Parra’s method.
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Figure 2.9. Separation performance of adaptive step size IVA method:
performance index at each frequency bin for ASS-IVA method at the
top and evaluation of permutation at the bottom.

The fourth simulation is using the proposed adaptive step size IVA (ASS-

IVA) method to separate the mixed signals. Fig 2.9 shows the separation

performance of the ASS-IVA method. The PIs are all approximately zero

and the PM values are all greater than zero in almost all frequency bins. It

indicates that the adaptive step size natural gradient IVA method separates

the mixed signals as well as the IVA method, which means the proposed

method still has a very good separation performance without permutation

problem.

The convergence performance comparison between the IVA method and

ASS-IVA method is shown in Fig 2.10. The convergence performance corre-

sponds to the performance achieved in Fig 2.8 and Fig 2.9. It is clear that

the convergence speed of the adaptive step size IVA is faster than the IVA

method in terms of iteration numbers. The iteration times for IVA to reach

the steady is approximately 100, while the iteration times for adaptive IVA
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Figure 2.10. Convergence comparison between IVA and ASS-IVA.
The solid line is the convergence of IVA, and the asterisk line is the
convergence of ASS-IVA.

is approximately 50. It saves almost half of iteration times compared with

IVA.

Moreover the separation results are also evaluated objectively by using

the SIR criterion. Table 2.1 is the SIR result of different methods. The SIR

improvement by using the adaptive step size IVA method is approximately

4dB. The SIR result indicates that the adaptive step size IVA has the best

performance among these methods. To further improve the convergence of

IVA, another more rapidly converging algorithm is considered.

Table 2.1. SIR comparison

method Parra’s IVA ASS-IVA

SIR 19.84 23.12 23.72
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2.5.3 Fast fixed-point IVA

Fast fixed-point independent vector analysis is a rapidly converging form of

IVA algorithm. Newton’s method is adopted in the update, which converges

quadratically and is free from selecting an efficient learning rate [29].

The objective function used by FastIVA is as follows:

JFastIV A =

N∑
i=1

(
E[F (

K∑
k=1

|ŝi(k)|2)]−
K∑
k=1

λi(k)(wi(k)
†wi(k)− 1)

)
(2.5.28)

where w†
i is the i-th row of the unmixing matrix W , and λi is the i-th

Lagrange multiplier. F (·) is the nonlinear function, which can take on several

different forms as discussed in [29]. It is a multivariate function of the

summation of the desired signals in all frequency bins.

In order to apply Newton’s method in the update rules, a quadratic

Taylor series polynomial approximation is introduced in the notations of

complex variables as follows, which can be used for a contrast function.

f(w) ≈f(wo) +
∂f(wo)

∂wT
(w−wo) +

∂f(wo)

∂w† (w−wo)
∗

+
1

2
(w−wo)

T ∂
2f(wo)

∂w∂wT
(w−wo)

+
1

2
(w−wo)

† ∂
2f(wo)

∂w∗∂w† (w−wo)
∗

+ (w−wo)
† ∂

2f(wo)

∂w∗∂wT
(w−wo)

(2.5.29)

Let wi(k) take place of w, and set f(wi(k)) to be the summation term

of the objective function

f(wi(k)) = E[F (

K∑
k′=1

|ŝi(k′)|2)]−
K∑

k′=1

λi(k
′)(wi(k

′)†wi(k
′)− 1) (2.5.30)

The wi(k) that optimizes f(wi(k)) will set the first order derivative
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∂f(wi(k))/∂wi(k)
∗ to be zero.

∂f(wi(k))

∂wi(k)∗
≈∂f(wi,o(k))

∂wi(k)∗
+

∂2f(wi,o)

∂(wi(k))∗∂(wi(k))T
(wi(k)−wi,o(k))

+
∂2f(wi,o)

∂(wi(k))∗∂(wi(k))†
(wi(k)−wi,o(k))

∗ ≡ 0

(2.5.31)

The derivative terms contained in equation (2.5.31) become:

∂f(wi,o(k))

∂wi(k)∗
= E[ŝi,o(k)

∗F ′(

K∑
k′=1

|ŝi,o(k′)|2)]− λi(k)wi,o(k) (2.5.32)

∂2f(wi,o)

∂(wi(k))∗∂(wi(k))T

= E[(F ′(
K∑

k′=1

|ŝi,o(k′)|2) + |ŝi,o(k)|2F ′′(
K∑

k′=1

|ŝi,o(k′)|2))x(k)x(k)∗]− λi(k)I

≈ E[(F ′(

K∑
k′=1

|ŝi,o(k′)|2) + |ŝi,o(k)|2F ′′(

K∑
k′=1

|ŝi,o(k)|2))]E[x(k)x(k)∗]− λi(k)I

=
(
E[(F ′(

K∑
k′=1

|ŝi,o(k′)|2) + |ŝi,o(k)|2F ′′(

K∑
k′=1

|ŝi,o(k′)|2))]− λi(k)
)
I

(2.5.33)

∂2f(wi,o)

∂(wi(k))∗∂(wi(k))†

= E[(ŝi,o(k)
∗)2F ′′(

K∑
k′=1

|ŝi,o(k′)|2))x(k)x(k)T ]

≈ E[(ŝi,o(k)
∗)2F ′′(

K∑
k′=1

|ŝi,o(k′)|2))]E[x(k)x(k)T ]

= 0

(2.5.34)

where F ′(·) and F ′′(·) denote the derivative and second derivative of F (·)

respectively. The assumption in equation (2.5.33) is E[x(k)x(k)∗] = I, which

is due to the whitening processing, and the assumption in equation (2.5.34)

is E[x(k)x(k)T ] = 0, which is the complex circularity assumption.
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By substitution, the iterative algorithm becomes as follows:

wi(k)← wi,o(k)−
E[ŝi,o(k)

∗F ′(
∑

k′ |ŝi,o(k′)|2)]− λi(k)wi,o(k)

E[(F ′(
∑

k′ |ŝi,o(k′)|2) + |ŝi,o(k)|2F ′′(
∑

k′ |ŝi,o(k′)|2))]− λi(k)

(2.5.35)

where the Lagrange multiplier λi(k) is

λi(k) = E[|ŝi,o(k)|2F ′(

K∑
k′=1

|ŝi,o(k′)|2)] (2.5.36)

Then with normalization, the learning rule is:

wi(k)←E[F
′
(

K∑
k′=1

|ŝi,o(k′)|2) + |ŝi,o(k)|2F
′′
(

K∑
k′=1

|ŝi(k′)|2))]wi(k)

− E[(ŝi,o(k))
∗F

′
(

K∑
k′=1

|ŝi,o(k′)|2)x(k)]

(2.5.37)

And if this is used for all sources, an unmixing matrix W (k) can be con-

structed which needs to be decorrelated with

W (k)← (W (k)(W (k))†)−1/2W (k). (2.5.38)

The nonlinear function is derived from the source prior. When the super-

Gaussian distribution used by the original natural gradient IVA algorithm

is used as the source prior for the FastIVA algorithm, with the zero mean

and unity variance assumptions, it takes the form

F (

K∑
k′=1

|ŝi(k′)|2) =
( K∑
k′=1

|ŝi(k′)|2
) 1

2 (2.5.39)

2.5.4 Auxiliary Function Based IVA

In order to avoid step size tuning and derive effective iterative update rules,

the auxiliary function technique is introduced, which is an extension of the

expectation-maximization algorithm [46]. In the auxiliary function tech-
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nique, an auxiliary function is designed for optimization. Instead of min-

imizing the cost function, the auxiliary function is minimized in terms of

auxiliary variables. The auxiliary function technique can guarantee mono-

tonic decrease of the cost function, and therefore provide effective iterative

update rules [30]. Thus the design of the auxiliary function is the central

problem.

For a general optimization problem, the target is to find a parameter

vector Θ = Θ̄ satisfying

Θ̄ = argminΘJ(Θ) (2.5.40)

where J(Θ) is an objective function.

In the auxiliary function technique, an auxiliary function Q(Θ, Θ̃) is

designed to satisfy

J(Θ) = minΘ̃Q(Θ, Θ̃) (2.5.41)

where Θ̃ is a vector of auxiliary variables. Then, the auxiliary function

instead of the objective function is minimized. The variables being iteratively

updated as

Θ̃(i+ 1) = argminΘ̃Q(Θ(i), Θ̃) (2.5.42)

Θ(i+ 1) = argminΘQ(Θ, Θ̃(i+ 1)) (2.5.43)

where i is the iteration index. When both equations (2.5.42) and (2.5.43) are

written in closed forms, the auxiliary function technique gives an efficient

iterative update rule [30].

As in [30] and [46], in order to determine the proper auxiliary function

for the IVA cost function, a definition is needed at first.

Definition 1 A set of real-valued functions of a vector random variable

z, Sg is defined as
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Sg = {g(z)|g(z) = gR(∥z∥2)} (2.5.44)

where gR(r) is a continuous and differentiable function of a real variable r and

g′R(r)/r is continuous everywhere together with monotonically decreasing in

r > 0.

The function gR(r) is derived from the source prior [46]. For the original

IVA algorithm,

g(z) = r (2.5.45)

where r = ∥z∥2.

Based on this definition, two theorems are introduced to design the aux-

iliary function [30].

Theorem 1 For any g(z) = gR(||z||2) ∈ Sg

g(z) ≤
g′R(r0)

2r0
r2 + (gR(r0)−

r0g
′
R(r0)

2
) (2.5.46)

where r = ||z||2, holds for any z and r0. The equality sign is satisfied if and

only if r0 = r = ||z||2.

Proof: Construct the function :

f(r) =
g′R(r0)

2r0
r2 + (gR(r0)−

r0g
′
R(r0)

2
)− gR(r) (2.5.47)

and differentiating,

f ′(r) =
g′R(r0)

r0
r − g′R(r) = r(

g′R(r0)

r0
−

g′R(r)

r
) (2.5.48)

According to the Definition 1, g′R(r)/r
2 monotonically decreases in r > 0.

It is also evident that f ′(r0) = 0. Then, f(r) has a unique minimum value

at r = r0, because f(r) is continuous everywhere and f(r0) = 0. Therefore,
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it follows that Theorem 1 is proved.

Theorem 2 For any g(z) = gR(∥z∥2)) ∈ Sg, let

Q(W,V) =
K∑
k=1

Qk(W (k),V(k)) (2.5.49)

where

Qk(W (k),V(k)) =
1

2

n∑
i=1

w†
i (k)Vi(k)wi(k)− log|detW (k)|+R (2.5.50)

and

Vi(k) = E[
g′R(ri)

ri
x(k)x(k)†] (2.5.51)

where ri is a positive random variable, V(k) represents a set of Vi(k) for

any i, V represents a set of Vi(k) for any i and k, and R is a constant term

independent of W . Then,

J(W) ≤ Q(W,V) (2.5.52)

holds for any W and any V. The equality sign holds if and only if

ri =

√√√√ K∑
k=1

|w†
i (k)x(k)|2 (2.5.53)

and J(W) is the IVA cost function:

J(W) =
n∑

i=1

E[g(yi)]−
K∑
k=1

log|detW (k)| (2.5.54)
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Proof: Apply Theorem 1 to E[g(yi)]

E[g(yi)] ≤ E[
g′R(ri)

2ri

K∑
k=1

|w†
i (k)x(k)|

2] +Ri

=
K∑
k=1

w†
i (k)E[

g′R(ri)

2ri
x(k)x(k)h]wi(k) +Ri

=
1

2

K∑
k=1

w†
i (k)Vi(k)wi(k) +Ri

(2.5.55)

where Vi(k) is defined as in equation (2.5.51) and Ri is a constant term

independent of wi(k). The equality sign holds if and only if equation (2.5.53)

is satisfied. Summing up equation (2.5.55) over all i, proves Theorem 2.

Theorem 2 shows that Q(W,V) is the proper auxiliary function for the

IVA cost function. So the update rules can be derived according to this

auxiliary function.

The update rules to minimize the auxiliary functionQ(W,V) are derived

dependent on the auxiliary variables update, namely W and V in this case.

The minimization of V can be achieved by using equations (2.5.51) and

(2.5.53) according to Theorem 2. The update of W can be obtained

∂Q(W,V)

∂w∗
i (k)

=
1

2
Vi(k)wi(k)−

∂log|detW (k)|
∂w∗

i (k)
= 0 (2.5.56)

Instead of simultaneously updating all wi(k), only the update of one

wi(k) is focused upon [30]. It is deduced that

w†
i (k)Vi(k)wi(k) = 1 (2.5.57)

and

w†
i (k)Vi(k)wj(k) = 0 (i ̸= j) (2.5.58)

According to the method described in [46], the updates of wi(k) can be
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achieved by

wi(k) = (W (k)Vi(k))
−1ei (2.5.59)

where ei is a unity vector, the i-th element of which is unity. Finally, the

normalization process is needed to satisfy equation (2.5.57)

wi(k) =
wi(k)√

w†
i (k)Vi(k)wi(k)

(2.5.60)

In summary, the overall update rules are the following:

(1) ri =

√∑K
k=1 |w

†
i (k)x(k)|2

(2) Vi(k) = E[
g′R(ri)

ri
x(k)x(k)†]

(3) wi(k) = (W (k)Vi(k))
−1ei

(4) wi(k) =
wi(k)√

w†
i (k)Vi(k)wi(k)

2.5.5 Summary

In this chapter, background knowledge related to convolutive blind source

separation problem was firstly introduced. The second order statistic meth-

ods and higher order statistic methods were discussed. Then, the original

natural gradient independent vector analysis algorithm was introduced, fol-

lowed by the proposed adaptive step size natural gradient IVA. The illustra-

tive experimental results confirm that the IVA algorithm can mitigate the

permutation problem, and the proposed adaptive step size natural gradient

IVA can achieve faster convergence in terms of the iteration numbers com-

pared with the original natural gradient IVA algorithm. At the end of this

chapter, two fast form IVA algorithms, i.e. the FastIVA algorithm and Aux-
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IVA algorithm, were briefly introduced. However, the IVA algorithms are

not always robust, a particular permutation problem sometimes happens.

This specific problem and the corresponding solutions will be discussed in

the next chapter.



Chapter 3

BLOCK PERMUTATION

PROBLEM OF

INDEPENDENT VECTOR

ANALYSIS

3.1 Introduction

Independent vector analysis is proposed to theoretically avoid the classical

permutation problem inherent to ICA method. However, a specific problem,

i.e. the block permutation problem, sometimes happens when using IVA. In

recent research work [47], a similar problem with the convergence of IVA is

termed as “partial permutation”, but without analysis about why this prob-

lem can occur. In this chapter, this problem is discussed by analyzing the

cost function, and two kinds of solutions are proposed. The first solution

exploits the phase continuity of the unmixing matrix to adjust the misalign-

ments and thereby retain consistent permutation across all frequency bins.

The second solution adopts an improved overlapped chain type dependency

model to mitigate this problem. The first scheme is shown when the original

natural gradient IVA is used, and the second one is illustrated by taking Aux-

IVA as an example. However, both of these two strategies can be adapted

69
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to all kinds of IVA algorithm for addressing the block permutation problem.

This chapter is targeted at satisfying the second objective of this thesis.

3.2 Block Permutation of IVA

The independent vector analysis (IVA) algorithm is essentially based on the

ICA algorithm with certain modifications. It exploits a dependency model

which captures inter-frequency dependencies. However, when employing the

IVA algorithm in practice, it has been found that alignment is generally

achieved between frequency bins which are closely spaced, but it is difficult

to guarantee the alignment of all frequency bins because distant spectral

components may not be highly dependent. Moreover, IVA can converge well

when the temporal activity between the sources is strongly uncorrelated,

otherwise the IVA method will exhibit poor convergence with an accompa-

nying block permutation problem. Additionally, this problem can also be

understood by examining the cost function. When the block permutation

problem happens, there is a block of frequency bins which can be denoted

[kb, ke], whose alignment is different from the other frequency bins. This

indicates that the corresponding rows of the unmixing matrix W (k) are ex-

changed. This modified unmixing matrix is denoted as W (k).

This problem can be discussed by analyzing the cost function of IVA.

Thus, the cost function as introduced in Chapter 2 is repeated here. The

cost function for IVA is the Kullback-Leibler divergence between the joint

probability density function p(ŝ) and the product of probability density func-

tions of the individual source vectors
∏

p(ŝi) [27],

J = KL(p(ŝ)||
∏

p(ŝi))

=

∫
p(ŝ1 · · · ŝn) log

p(ŝ1 · · · ŝn)∏
p(ŝi)

dŝ1 · · · dŝn

= const−
K∑
k=1

log |det(W (k))| −
n∑

i=1

E[log p(ŝi)]

(3.2.1)
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A 2× 2 case is used to illustrate this problem. Because the first term of

the cost function is a constant and

log |det(W (k))| = log |det(W (k))|, (3.2.2)

the last term of the cost function is the only thing changed when the block

permutation problem happens. Due to the assumption that the multivari-

ate Laplacian distribution is used as the source prior for the original IVA

algorithm, the last term is defined as

J1 = E
[
−
√∑

k

|ŝ1(k)|2] + E[−
√∑

k

|ŝ2(k)|2
]
. (3.2.3)

When the block permutation happens, the last term becomes

J2 = E
[
−

√√√√kb−1∑
1

|ŝ1(k)|2 +
ke∑
kb

|ŝ2(k)|2 +
K∑

ke+1

|ŝ1(k)|2
]

+ E
[
−

√√√√kb−1∑
1

|ŝ2(k)|2 +
ke∑
kb

|ŝ1(k)|2 +
K∑

ke+1

|ŝ2(k)|2
]
.

(3.2.4)

So that when
ke∑
kb

|ŝ1(k)|2 =
ke∑
kb

|ŝ2(k)|2 (3.2.5)

it follows that J1 = J2 which implies the cost function achieves the same

value as there is no block permutation. This analysis indicates that there

is no penalty for IVA converging to a block permutation solution. This ex-

plains why the block permutation problem happens, and it is emphasized

that this problem is different from the conventional permutation problem

encountered in frequency domain ICA where such block permutation prob-

lems are generally not observed. An example of this problem is shown in

Fig 3.1.

Fig. 3.1 demonstrates the block permutation problem in IVA for an ex-
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Figure 3.1. Example of the block permutation problem of IVA.

actly determined 2×2 case. The upper part of the figure is the performance

index as a function of frequency [12], as given by equation (2.5.27). Note

that the larger values of PI outside of the axis range represent poor sepa-

ration, and therefore can be chopped. The lower part is the permutation

measurement. When the permutation measurement is equal to 1, it means

the overall system matrix G is an identity matrix; while if it equals to -1,

it means G is [0 1;1 0]. Both of the mixtures are well separated, however,

they indicate two alignments across frequencies. It is clear to see that there

is a block permutation in the permutation measurement, which means the

alignments of the separated signals are different. Thus, when the separated

signals are transformed back to the time domain, they will be still mixed

without full separation.
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3.3 Robust IVA Exploiting Phase Continuity of the Unmixing Ma-

trix

The block permutation problem can be addressed by exploiting phase con-

tinuity of the unmixing matrix. The natural gradient IVA is taken as an

example to show how to use phase continuity to correct the misalignment

and keep the permutation consistent across all the frequency bins.

3.3.1 Phase Continuity of the Unmixing Matrix

In the exactly determined 2 × 2 anechoic case, each observed mixture can

be viewed as a sum of delayed and scaled versions of the original signals

according to the position of the sources. In the frequency domain, each

observed component could be viewed as a sum of phase-rotated versions of

the frequency domain component of the original signals [48]. The mixing

matrix at the k-th frequency becomes

H(k) =

|h11|e−j2πkt11 |h12|e−j2πkt12

|h21|e−j2πkt21 |h22|e−j2πkt22

 (3.3.1)

where |hij | and tij denote the channel gain and transmit time between the i-

th microphone and j-th source respectively, and |·| is the magnitude operator.

Ideally, the unmixing matrix should be the inverse of the mixing matrix.

W (k) =

 |h22|e−j2πkt22 −|h12|e−j2πkt12

−|h21|e−j2πkt21 |h11|e−j2πkt11

 1

det(H(k))
(3.3.2)

It is clear that the phase difference between any two elements of the

unmixing matrix is a linear function according to the frequency, because

t11, t12, t21 and t22 are fixed in this ideal situation. Considering the scaling
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problem inherent to ICA, the unmixing matrix becomes:

W (k) =

 c1(k)
det(H(k)) 0

0 c2(k)
det(H(k))

×
 |h22|e−j2πkt22 −|h12|e−j2πkt12

−|h21|e−j2πkt21 |h11|e−j2πkt11


(3.3.3)

where c1 and c2 are arbitrary and generally different non zero complex scal-

ing factors. Because they are complex, they can affect the phase information

of the unmixing matrix. However, the phase difference between the columns

will be invariant to the scale factors as observed by the ratio between the

elements of the first row

r = −|h22|
|h12|

e−j2πk(t22−t12). (3.3.4)

In the exactly determined case with more than two sources, the phase

difference between columns will still be invariant [49]. In a real environ-

ment, due to the reverberations, the linearity may be distorted. However,

this information can still be useful if it is taken as a criterion to judge the

separation performance, because after mitigating reverberation problems,

the phase difference will be essentially continuous with a trend approaching

linearity.

3.3.2 Robust IVA Based on Phase Continuity of the Unmixing

Matrix

By observing Fig. 3.1, it is clear the problem can be solved if where the

block permutation problem happens is known. However, the permutation

measurement needs prior knowledge of the mixing matrix. In practical BSS

it is impossible to have access to such prior knowledge. However, the phase

continuity of the unmixing matrix can be exploited to determine where this

problem happens, because the continuity of the unmixing matrix is likely to
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be destroyed when the block permutation happens.

When the block permutation happens, the sign of the permutation mea-

surement [abs(G11G22)− abs(G12G21)] in the lower frequency bins is oppo-

site to the higher bins. In order to solve the block permutation problem,

a reference sign for the permutation measurement is required. Then an

permutation matrix A is used to keep the sign of the permutation measure-

ment consistent with the reference sign. Thus the overall system matrix

G = AWH, where A is the identity matrix when the sign of the permuta-

tion measurement is the same as the reference sign, and A is [0 1;1 0] when

the sign of the permutation measurement is opposite to the reference sign.

In this scheme therefore the IVA method is still used initially to separate

the mixtures, but after the unmixing matrix is obtained by IVA, the phase

information of the unmixing matrix is checked to observe the occurrence of

the block permutation problem, where

phase(W (k)) =

phase(w11(k)) phase(w12(k))

phase(w21(k)) phase(w22(k))

 (3.3.5)

Then the phase difference between columns is calculated. The first row is

taken as the observation target as in equation (3.3.4).

∆phase(W (k)) = phase(w11(k))− phase(w12(k))

= 2πk(t22 − t12)

(3.3.6)

Ideally, the sign of ∆phase(W (k)) should be the same across all fre-

quencies. In order to identify the reference sign, a test block over the high

frequencies is set assuming that high frequency range information is reli-

able, thereby avoiding spatial aliasing problems at lower frequencies, and

the mean of ∆phase(W (k)) is calculated. If it is greater than zero, the sign
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of all the phase differences should be positive. Otherwise, all of them should

be negative. Then the phase difference is checked frequency-by-frequency,

and the unmixing matrices are adjusted to make sure that the sign of the

permutation measurement is consistent.

The flow of this robust IVA (RIVA) method becomes:

(1) Obtain the unmixing matrix for every frequency by using the IVA

method.

(2) Calculate the phase of the unmixing matrices according to equation

(3.3.5).

(3) Calculate the phase differences of the first row according to equation

(3.3.6).

(4) Form a test block over the high frequencies, and calculate the mean

of the phase difference in this block to set the reference sign.

(5) Check the signs of the phase differences across all frequencies, if any

are different from the reference sign, interchange the rows of the unmixing

matrix otherwise leave them unaltered.

3.3.3 Experimental Results

In the experiments, the proposed robust IVA algorithm is used to solve the

block permutation problem. The source signals are from Sawada’s web-

site “http://www.kecl.ntt.co.jp/icl/signal/sawada”, which is approximately

7 seconds long for each source. The image method is used to generate the

room response model [50], and the size of the room is 7×5×3m3, the STFT

length T = 1024, and RT60 = 150ms. A 2×2 mixing case is used, for which

the microphone positions are [2.36, 2.50, 1.50] and [2.40, 2.50, 1.50] respec-

tively. The sampling frequency Fs is 8kHz. The separation performance is

evaluated objectively by the performance index (PI), the signal-to-distortion

ratio (SDR) and signal-to-interference ratio (SIR).

The SDR and SIR used here are proposed by Vincent [51]. The estimated
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source signal is decomposed as:

ŝj = starget + einterf + enoise + eartif (3.3.7)

where starget is a version of sj modified by an allowed distortion; einterf , enoise

and eartif are the interferences, noise and artifacts error terms respectively.

Then the SDR and SIR can be calculated as

SDR = 10 log10
||starget||2

||einterf + enoise + eartif ||2
(3.3.8)

SIR = 10 log10
||starget||2

||einterf ||2
(3.3.9)

where || · ||2 denotes the energy of the signal.

In the first experiment the source positions are set as [3.25, 3.8, 1.50]

and [1.75, 3.8, 1.50]. Fig. 3.2 shows the separation performance, and Fig.

3.3 shows the phase difference of the unmixing matrix. The frequency bin

range [0, 512] corresponds to [0, 4000]Hz as the sampling frequency is 8kHz.

The upper part of Fig. 3.2 is the performance index, and the lower part is

the permutation measurement. It is clear to see the occurrence of the block

permutation problem in the original IVA method [27]. The phase difference

in Fig. 3.3 also confirms the block permutation problem. And the objective

evaluations of SIR and SDR are all negative for the original IVA method

(shown in the Table 3.1). This verifies that there is poor source separation

due to the block permutation problem.

Next the robust IVA (RIVA) method is used to separate the same mix-

tures, and the length of the test block which is used to identify the reference

sign is 200 frequency bins from 312 to 512. Fig. 3.4 shows an improved sep-

aration performance in comparison with Fig. 3.2. By observing Fig. 3.5, it

is evident that the phase difference has a linear trend and there is no block

permutation problem. Moreover, the comparison of objective measures is
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Figure 3.2. Separation performance by using original IVA.
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Figure 3.3. Phase difference by using orginal IVA.
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Figure 3.4. Separation performance by using robust IVA.
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Figure 3.5. Phase difference by using robust IVA.
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shown in Table 3.1. The SIR and SDR averaged across the two sources are

8.50dB and 17.89dB respectively, which also verify that the proposed RIVA

solves the block permutation problem and separates the sources.

Table 3.1. SDR and SIR comparison of the first experiment.

IVA RIVA
S1 S2 Mean S1 S2 Mean

SDR(dB) -5.13 -4.23 -4.68 8.63 8.36 8.50
SIR(dB) -3.40 -3.26 -3.33 22.03 13.74 17.89

In the second experiment, the source positions are set as [2.75, 3.8, 1.50]

and [1.75, 3.8, 1.50]. Figs. 3.6 and 3.7 show the separation performance

and the phase difference when the original IVA is used. The permutation

measurement in Fig. 3.6 shows that there is no block permutation problem.

Moreover, Fig. 3.7 also confirms this. However, there is a permutation

problem at certain frequencies. And the objective measures are shown in

Table 3.2.

Then the robust IVA (RIVA) scheme is also used to separate the same

mixtures. The results are given in Fig 3.8 and Fig 3.9. The separation

performance is improved by mitigating the permutation problem at certain

frequency bins. And the comparisons based on objective measures of SDR

and SIR are shown in Table 3.2. The results verify that the proposed scheme

improves SIR and SDR by 2.8dB and 1.8dB respectively, when the original

IVA method has no block permutation problem, which again confirms the

robustness of the proposed technique.

Different source signals and different locations are adopted to perform

10 experiments where there is no block permutation problem, and finally

the comparison is obtained as shown in Fig 3.10. The average SDR and SIR

improve approximately by 1.3dB and 3.0dB respectively.
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Figure 3.6. Separation performance by using original IVA.
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Figure 3.7. Phase difference by using orginal IVA.
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Figure 3.8. Separation performance by using robust IVA.
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Figure 3.9. Phase difference by using robust IVA.
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Figure 3.10. Average SDR and SIR comparison.

Table 3.2. SDR and SIR comparison of the second experiment.

IVA RIVA
S1 S2 Mean S1 S2 Mean

SDR(dB) 4.38 3.84 4.11 5.42 6.40 5.91
SIR(dB) 8.54 6.25 7.40 9.51 10.92 10.21

3.4 Overcoming Block Permutation by Using an Improved De-

pendency Model

Another solution for overcoming the block permutation problem is adopting

an improved overlapped chain type dependency model. The AuxIVA is taken

as the example to show that AuxIVA with the improved dependency model

can mitigate the block permutation problem.
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3.4.1 Block Permutation for AuxIVA

An auxiliary function based independent vector analysis (AuxIVA) algorithm

has been proposed recently [30]. The auxiliary function method is an ex-

tension of the expectation-maximization algorithm, which is widely used for

statistical inference problems in signal processing. The AuxIVA algorithm

can avoid the step size tuning problem in conventional IVA and gives effec-

tive iterative update rules which can guarantee the monotonic decrease of

the objective function at each update [30]. The original AuxIVA assumes the

source probability density function is multivariate super-Gaussian which is

overall hyper-spherical or radially symmetric. The radial symmetry assumes

that the dependency between all the frequency bins is the same, which is

a constraint and can lead to a block permutation problem which results in

poorer separation.

The auxiliary function used in the AuxIVA algorithm formulation is a

function of unmixing matrices W and weighted covariance matrices V. W

is a set of unmixing matrices W (k) for all the frequency bins, and W (k) =

(w1, · · · ,wN )†. V is a set of Vi(k) for any i and k.

Q(W,V) =

K∑
k=1

Q(k) =

K∑
k=1

(
1

2

N∑
i=1

w†
i (k)Vi(k)wi(k)− log |det(W (k))|) +R

(3.4.1)

where R is a scalar constant term, and Vi(k) is the weighted covariance

matrix at the k-th frequency bin, which can be calculated as:

Vi(k) = E[
g′R(ri)

ri
x(k)x(k)†] (3.4.2)

When the multivariate Laplacian source prior is adopted, the contrast

function becomes

gR(ri) = ri =

√√√√ K∑
k=1

|ŝi(k)|2 (3.4.3)
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For the original AuxIVA algorithm, g′R(ri)/ri is used to retain the depen-

dencies between frequencies. It corresponds to a hyper-spherical model and

assumes the dependencies between all frequency bins are all the same. How-

ever, it is high likely that the dependencies between frequency bins which

are far away from each other are weak. Due to this reason, the block permu-

tation problem can happen as shown in Fig 3.1. The reason for this problem

can also be understood by examining the cost function. It is defined that

Q′ ,
N∑
i=1

w†
i (k)Vi(k)wi(k) (3.4.4)

Assuming there are two sources and two mixtures, by using (3.4.2) and

(3.4.3)

Q′
1 = w†

1(k)E
[ x(k)x(k)†√∑K

k=1 |ŝ1(k)|2

]
w1(k) +w†

2(k)E
[ x(k)x(k)†√∑K

k=1 |ŝ2(k)|2

]
w2(k)

= E
[ |ŝ1(k)|2√∑K

k=1 |ŝ1(k)|2

]
+ E

[ |ŝ2(k)|2√∑K
k=1 |ŝ2(k)|2

]

≈ 1

K

(√√√√ K∑
k=1

|ŝ1(k)|2 +

√√√√ K∑
k=1

|ŝ2(k)|2
)

(3.4.5)

Then, when block permutation happens in frequency bin block [kb, ke],

the corresponding rows of the unmixing matrices W (k) are exchanged, and

the modified unmixing matrices are denoted as W̄ (k). Because

log |det(W (k))| = log |det(W̄ (k))| (3.4.6)

and R in equation (3.4.1) is a scalar constant term which is independent of

the unmixing matrix. Thus, Q′ is the only term changed in equation (3.4.1),
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which becomes

Q′
2 ≈

1

K

(√√√√kb−1∑
1

|ŝ1(k)|2 +
ke∑
kb

|ŝ2(k)|2 +
K∑

ke+1

|ŝ1(k)|2

+

√√√√kb−1∑
1

|ŝ2(k)|2 +
ke∑
kb

|ŝ1(k)|2 +
K∑

ke+1

|ŝ2(k)|2
) (3.4.7)

When
ke∑
kb

|ŝ1(k)|2 =
ke∑
kb

|ŝ2(k)|2 (3.4.8)

it follows that Q′
1 = Q′

2, and therefore there is no penalty for the AuxIVA

converging to a block permutation solution. To confirm the problem occurs

regularly, different speech signals chosen randomly from Sawada’s dataset as

mentioned in the previous experiment, are positioned at a variety of different

locations in a room environment to generate microphone measurements by

using the image method. Then the AuxIVA method was used to separate

them. It is found that approximately 29% of them suffer from the block per-

mutation problem which justifies the need to overcome the ill-convergence.

3.4.2 Overlapped Chain Type Dependency Model for AuxIVA

For the original dependency model, it assumes same dependency between

any of two frequency bins. However, for the speech signal, it is inappropri-

ate to make the assumption that two far apart frequency bins have the same

strong dependency as two neighboring frequency bins. Generally, the depen-

dency between two neighboring frequency bins is much stronger than that of

frequency bins far apart. Thus, a chain type dependency model is adopted

for AuxIVA. This improved dependency model divides the whole range of

frequency bins to several overlapped frequency bin blocks, which is linked

as a chain [33]. As such, it can strengthen the neighborhood dependence,

while weakens the dependence when frequency bins are far way. Therefore,
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g′R(ri)/ri becomes

g′R(ri)

ri
=

1√∑ke1
kb1
|ŝi(k)|2

+
1√∑ke2

kb2
|ŝi(k)|2

+ · · ·+ 1√∑kel
kbl
|ŝi(k)|2

(3.4.9)

where kbl and kel denote the beginning and end frequency bins of the l-th

frequency bin sub-block. The updates of the rows of the unmixing matrix

are

wi(k) = [W (k)Vi(k)]
−1ei i = 1, · · · , N (3.4.10)

where ei denotes the unit column vector with the i-th element unity. The

advantage of this improved source dependency model will be confirmed in

experimental evaluations.

3.4.3 Experimental Results

In the simulations, the speech signals used are also from Sawada’s dataset,

each of them is approximately 7 seconds long. The image method was used

to generate the room impulse responses [50], and the size of the room is

7 × 5 × 3m3. The STFT length is 1024, and RT60 = 200ms. A 2 × 2

mixing case is used, for which the microphone positions are [3.48, 2.50, 1.50]

and [3.52, 2.50, 1.50] respectively. The sampling frequency is 8kHz. The

improved source dependency model divides the whole frequency range into

three parts with 50% overlap. The separation performance is evaluated

objectively by SDR and SIR [51].

An example of solving the block permutation problem is given. Two

speech signals are chosen from Sawada’s dataset, and placed at the positions

[4.8 3.25 1.5] and [2.75 3.8 1.5], whose directions of arrival are respectively

60 and 120 degrees with reference to the center of the microphones. The ex-

perimental result shows that AuxIVA can not separate the mixtures due to

the block permutation problem which can be observed by the permutation
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Figure 3.11. The permutation measurement showing the block per-
mutation problem by using AuxIVA.

measurement shown in Fig. 3.11. The SDR is 1.82dB and SIR is 3.00dB,

which also confirms that the mixtures are not separated well. By using the

improved dependency model AuxIVA (IAuxIVA) algorithm, the block per-

mutation problem can be solved and thereby the mixtures can be separated.

The result is shown in Fig. 3.12. The objective evaluation SDR is 5.44dB

and SIR is 6.54dB, which indicate that the mixtures are separated.

The separation performance comparison is also shown when there is no

block permutation problem. The AuxIVA method is firstly used to separate

the speech mixtures which are generated by positioning the other two source

speech signals at different locations. Then the IAuxIVA is used to separate

the same speech mixtures. The comparison results are shown in Table 3.3.

It is clear that the proposed method can also improve the convergence speed

to achieve essentially the same separation performance as AuxIVA.
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Figure 3.12. The permutation measurement without the block per-
mutation problem by using AuxIVA with the proposed dependency
model.

Table 3.3. Separation performance comparison when there is no block
permutation problem.

angles iterations SDR(dB) SIR(dB)
AuxIVA IAuxIVA AuxIVA IAuxIVA AuxIVA IAuxIVA

30,120 32 23 20.24 20.17 22.33 22.27
60,120 34 29 17.98 18.17 19.61 19.70
30,150 34 23 20.91 20.96 22.96 22.87
60,150 38 32 19.50 19.44 21.29 21.17

3.5 Summary

In this chapter, the specific block permutation problem inherent to IVA was

highlighted, and discussed by analyzing the cost function of IVA. Then, two

kind of solutions were proposed. The first one exploited the phase continuity

of the unmixing matrix, and the second adopted the overlapped chain type
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source prior to provide improved dependency model. Both of these two

schemes can be adapted to all IVA algorithms to solve the block permutation

problem. In the next chapter, an informed IVA scheme will be proposed,

which can also solve this problem by introducing prior information.



Chapter 4

INFORMED INDEPENDENT

VECTOR ANALYSIS

4.1 Introduction

IVA is a blind source separation method; which generally implies that no

prior information such as geometric positions of the sources is used to aid

performance. However, as people not only use their ears to solve the cocktail

party problem, but also their eyes, it is natural to exploit video information

within such machine learning algorithms [52] [53] [54] [55] [56] [57] [58].

In this chapter, an informed IVA scheme is proposed, which combines the

FastIVA algorithm with prior geometric information of the sources, which is

obtained from video, to help the separation.

For FastIVA, although it can achieve fast convergence, sometimes it can

still suffer the special block permutation problem. In this chapter, this spe-

cial problem is highlighted and analytically demonstrated. It is also shown

that such ill-convergence can be mitigated by setting a good initialization of

the unmixing matrix, which also satisfies the second objective of this thesis.

Initialization is important for the optimization problem because it can

improve convergence speed by ensuring a short cut convergence path avoid-

ing local minimum points which yield poor separation. Source position in-

formation is important prior knowledge for setting a good initialization, and

91
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it can be obtained by audio localization or video localization. Audio lo-

calization for a single active speaker is difficult because human speech is an

intermittent signal and contains much of its energy in the low-frequency bins

where spatial discrimination is imprecise [59]. Audio localization can also be

affected by noise and room environment [60] [61]. Additionally, audio local-

ization is not always effective due to the complexity in the case of multiple

concurrent speakers [53]. Therefore, the accuracy of the audio localization

would be degraded in a multisource real room environment with noise and

reverberations, but video localization is generally robust in such an environ-

ment. On the other hand, video localization is not always effective, especially

when the face of a human being is not visible to at least two cameras due

to some obstacles, for example when the environment is cluttered, camera

angle is wide, or illumination conditions are varying. For an audio video

combined source separation method, besides the direction of arrival (DOA)

information, another type of combination is using audio video coherence for

separation [22] [62] [63] [64]. However, for the room environment (as used

in the AV16.3 recordings [39]), it is not possible to perform lip reading due

to the sources being far from the cameras. Therefore, cameras are only used

to capture the locations of the speakers in this chapter. Then the positions

can be used to obtain a smart initialization for the convergence of the learn-

ing algorithm. Thus, a new audio video based fast fixed-point independent

vector analysis (AVIVA) method is proposed, which uses video information

to initialize the algorithm.

In order to verify the advantages of AVIVA, datasets containing multiple

speech and noise signals are used in its evaluation. Most speech separation

evaluations have been undertaken by using artificial recordings. Few of them

use real room recordings due to the practical constraints. However, in this

chapter, the proposed AVIVA method is tested with real room recordings,

i.e. the AV16.3 corpus [39], which not only confirms the advantages of the
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proposed method, but also confirms the practical advantage of this work.

For real dataset, the separation performance evaluation becomes a prob-

lem. There is no objective evaluation method proposed to evaluate such real

room recordings. Traditional evaluations are all based on prior knowledge

such as the mixing filters or source signals. For instance, the performance

index needs the mixing filters [12], and the signal-to-interference ratio or

signal-to-distortion ratio require the original speech signals [51]. However,

for a real recorded dataset, the only obtained information is the audio mix-

tures. Therefore, a new evaluation method is needed without requiring any

other prior knowledge. In this chapter, a new evaluation method based on

pitch information is employed. It detects the pitches of all the separated

signals, and then calculates the pitch differences between them, and thereby

provides an objective evaluation between methods. This chapter begins with

the block permutation problem of the FastIVA algorithm.

4.2 Block Permutation Problem of FastIVA

The analysis of the block permutation problem is similar to that in Chapter

3. The occurrence of the block permutation problem can be understood by

examining the cost function. For a 2× 2 case, the cost function for FastIVA

takes the form:

JFastIV A =E
[
F (

∑
k

|ŝ1(k)|2)
]
−

∑
k

λ1(k)
(
w†

1(k)w1(k)− 1
)

+E
[
F (

∑
k

|ŝ2(k)|2)
]
−

∑
k

λ2(k)
(
w†

2(k)w2(k)− 1
) (4.2.1)

as in [29], where the Lagrange multiplier λ
(k)
i is:

λ
(k)
i = E

[
|ŝ(k)i |

2F ′(
∑
k

|ŝ(k)i |
2)
]

(4.2.2)
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The original FastIVA adopts the multivariate Laplacian distribution as the

source prior. The corresponding nonlinear function is:

F (z) =
√
z (4.2.3)

Thus, the cost function becomes:

J1FastIV A =E
[√∑

k

|ŝ1(k)|2
]
−

∑
k

E
[ |ŝ1(k)|2

2
√∑

k |ŝ1(k)|2
](

w†
1(k)w1(k)− 1

)
+ E

[√∑
k

|ŝ2(k)|2
]
−

∑
k

E
[ |ŝ2(k)|2

2
√∑

k |ŝ2(k)|2
](

w†
2(k)w2(k)− 1

)
(4.2.4)

If the block permutation problem happens, there is a frequency bin block over

the range [kb, ke] with a different separation alignment from other frequency

bins, and w1, w2 are exchanged. Then, the cost function becomes:
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J2FastIV A =

E
[√√√√kb−1∑

k=1

|ŝ1(k)|2 +
ke∑

k=kb

|ŝ2(k)|2 +
K∑

k=ke+1

|ŝ1(k)|2
]

+ E
[√√√√kb−1∑

k=1

|ŝ2(k)|2 +
ke∑

k=kb

|ŝ1(k)|2 +
K∑

k=ke+1

|ŝ2(k)|2
]

−
kb−1∑
k=1

E
[ |ŝ1(k)|2

2

√
kb−1∑
k=1

|ŝ1(k)|2 +
ke∑

k=kb

|ŝ2(k)|2 +
K∑

k=ke+1

|ŝ1(k)|2

](
w†

1(k)w1(k)− 1
)

−
ke∑

k=kb

E
[ |ŝ2(k)|2

2

√
kb−1∑
k=1

|ŝ1(k)|2 +
ke∑

k=kb

|ŝ2(k)|2 +
K∑

k=ke+1

|ŝ1(k)|2

](
w†

2(k)w2(k)− 1
)

−
K∑

k=ke+1

E
[ |ŝ1(k)|2

2

√
kb−1∑
k=1

|ŝ1(k)|2 +
ke∑

k=kb

|ŝ2(k)|2 +
K∑

k=ke+1

|ŝ1(k)|2

](
w†

1(k)w1(k)− 1
)

−
kb−1∑
k=1

E
[ |ŝ2(k)|2

2

√
kb−1∑
k=1

|ŝ2(k)|2 +
ke∑

k=kb

|ŝ1(k)|2 +
K∑

k=ke+1

|ŝ2(k)|2

](
w†

2(k)w2(k)− 1
)

−
ke∑

k=kb

E
[ |ŝ1(k)|2

2

√
kb−1∑
k=1

|ŝ2(k)|2 +
ke∑

k=kb

|ŝ1(k)|2 +
K∑

k=ke+1

|ŝ2(k)|2

](
w†

1(k)w1(k)− 1
)

−
K∑

k=ke+1

E
[ |ŝ2(k)|2

2

√
kb−1∑
k=1

|ŝ2(k)|2 +
ke∑

k=kb

|ŝ1(k)|2 +
K∑

k=ke+1

|ŝ2(k)|2

](
w†

2(k)w2(k)− 1
)

(4.2.5)

It is evident that when

ke∑
k=kb

|ŝ1(k)|2 =
ke∑

k=kb

|ŝ2(k)|2 (4.2.6)

is satisfied, the cost function has the same value, i.e. J1FastIV A = J2FastIV A.

This indicates that there is no penalty for the FastIVA converging to a block

permutation solution, which is also a global minimum with the same value
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as the correct solution. For the case where there are more sources, a similar

analysis can also be used to confirm that the block permutation can happen.

4.3 Audio Video Based FastIVA

Based on the analysis and discussion in the above section, it is evident that

it is necessary to set a proper initialization for the FastIVA algorithm to

mitigate the block permutation problem. Moreover, a proper initialization

can also achieve faster convergence and better performance, which is common

for any optimization problem. Additionally, such a video localization based

algorithm can improve the separation performance especially when there

is background noise and a highly reverberant room environment, because

audio localization can be seriously affected by such noise and reverberation

[60]. The system configuration is shown in Fig. 4.1, further details of the

processing can be found in [6] [65].

Firstly, video localization based on face and head detection is used to ob-

tain the visual location of each speaker which is approximated after process-

ing the 2-D image information and obtained from at least two synchronized

colour video cameras through calibration parameters [66] and an optimiza-

tion method [67].

After estimating the 3-D position of each speaker i, the elevation (θi)

and azimuth (ϕi) angles of arrival to the center of the microphone array are

calculated from

Ri =
√

(uxi − u′
xc
)2 + (uyi − u′

yc)
2 + (uzi − u′

zc)
2 (4.3.1)

θi = tan−1(
uyi − u

′
yc

uxi − u′
xc

) (4.3.2)

ϕi = sin−1(
uyi − u

′
yc

Risin(θi)
) (4.3.3)
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Figure 4.1. Block diagram of the audio video based fast fixed-point
independent vector analysis. Video localization is based on face and
head detection. The visual location of each speaker is approximated
after processing the 2-D image information and obtained from at least
two synchronized colour video cameras through calibration parameters
and an optimization method. The position of the microphone array and
the output of the visual localizer are used to calculate the direction of
arrival information of each speaker. Based on this information, a smart
initialization is set for the FastIVA algorithm.

where uxi , uyi and uzi are the 3-D positions of the speaker i, while u
′
xc
, u

′
yc

and u
′
zc are Cartesian coordinates of the center of the microphone array.

Then the mixing matrix can be calculated under the plane wave propa-

gation assumption by using the DOA information.

H(k) = [h(k)(θ1, ϕ1) · · ·h(k)(θn, ϕn)] (4.3.4)

where

h(k)(θi, ϕi) =


e−jκ

(
sin(θi)cos(ϕi)u

′
x1

+sin(θi)sin(ϕi)u
′
y1

+cos(θi)u
′
z1

)
...

e−jκ
(
sin(θi)cos(ϕi)u

′
xm

+sin(θi)sin(ϕi)u
′
ym

+cos(θi)u
′
zm

)
(4.3.5)

and κ = k/c where c is the speed of sound in air at room temperature. The
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coordinates u
′
xi
, u

′
yi and u

′
zi are the 3-D positions of the i-th microphone.

Thus, the initialization of the unmixing matrix can be obtained by fol-

lowing the approach in [21]

W †(k) = Qw(k)H(k) (4.3.6)

where Qw is the whitening matrix. The above estimation is biased because

it only takes the DOA information to construct the mixing matrix. How-

ever, this biased estimation can be used as the initialization of the unmixing

matrix of FastIVA rather than an identity matrix or random matrix. The

real room recordings will be used to test this proposed method, and an eval-

uation criterion for real room recording will be presented in the following

section.

4.4 Pitch Based Evaluation For Real Recordings

In this chapter, the real datasets with multiple signals are used to test the

algorithm. Thus how to evaluate the separation performance becomes an

issue. For real room recordings, the only measurements obtained are the

mixed signals captured by the microphone array. It is impossible to access

either the mixing matrix or the pure source signals. Thus, it is impossi-

ble to evaluate the separation performance by traditional methods, such as

performance index [12] which is based on the prior knowledge of the mix-

ing matrix, or the SIR or SDR [51] which require prior knowledge about

the source signals. It is a challenging problem to evaluate objectively real

recording separation performance. People can listen to the separated speech

signals, but it is just a form of subjective evaluation, such as mean opinion

score (MOS). In order to evaluate the results objectively, the features of the

separated signals should be used. Pitch information is one of the features

which can help to evaluate the separation performance, because different
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speech sections at different time slots have different pitches [68] provided

that the original sources do not have substantially overlapping pitch charac-

teristics. The sawtooth waveform inspired pitch estimator (SWIPE) method

is adopted [69], which has better performance compared with traditional

pitch estimators [70] [71] [72] [73].
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Figure 4.2. The pitch tracks of two mixture signals.

Fig. 4.2 shows that the pitches of the mixed signals are still mixed, while

the pitches of the source signals in Fig. 4.3 are well separated. It is obvious

that good separated pitches can indicate good separation performance pro-

vided that the original sources do not have substantially overlapping pitch

characteristics. In order to evaluate performance objectively, the pitch dif-

ferences are calculated:

pdiff (t) =

√∑
i ̸=j

(pi(t)− pj(t))2 i, j = 1, · · · ,m and t = 1, · · · , TL (4.4.1)

where TL is the number of time slots. Then a threshold pthr is set, if the
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Figure 4.3. The pitch tracks of two separated signals.

pitch difference is greater than the threshold at a certain time slot, it can

be considered that the mixed signals are separated at that time slot and set

the separation status equal to 1, otherwise 0, as defined by

sep status(t) =


1 if pdiff (t) > pthr

0 otherwise

(4.4.2)

Finally, a separation rate can be calculated to evaluate the separation per-

formance.

sep rate =

∑
t sep status(t)

TL
(4.4.3)

The separation performance improves as the separation rate increases. It is

highlighted here that it can not evaluate the absolute quality of the separated

speech signal, but it can be used for comparing the separation performance

when using different separation methods.
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4.5 Experiments and Results

In this section, three different kinds of experimental results are shown by

using different multisource datasets to show the advantage of the proposed

AVIVA algorithm. The first experiment will show that the proposed AVIVA

algorithm can successfully avoid the block permutation problem. The sec-

ond experiment will demonstrate the advantage of AVIVA in the aspect of

convergence speed and separation performance improvement in a noisy en-

vironment and in a highly reverberant environment. The positions of the

source speech signal are assumed known in these two experiments, and the

initialization is based on these positions. The last experiment shows the

proposed method used in a real application by using the real multisource

dataset. The 3-D video localizer is used to capture the source positions.

4.5.1 Experimental Demonstration of the Block Permutation Prob-

lem

For the real room recordings, it is impossible to obtain the mixing filters,

therefore the block permutation can not be observed visually. In the first

simulation, it assumes that the source signals and mixing filters are known

to experimentally demonstrate the block permutation problem. The speech

signals are also from Sawada’s dataset as previous chapters. Each speech

signal is approximately 7 seconds long. The image method is used to generate

the room impulse responses [50], and the size of the room is [7,5,3], which

represents the length, the width and the height respectively, and the measure

unit is meter. The STFT length is 1024 samples, and reverberation time

RT60 = 200ms. A 2 × 2 mixing case is used, for which the microphone

positions are [3.48, 2.50, 1.50] and [3.52, 2.50, 1.50] respectively in Cartesian

coordinates. The sampling frequency is 8kHz. The separation performance is

evaluated objectively by performance index (PI) [12], the signal-to-distortion
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ratio (SDR) and signal-to-interference ratio (SIR) [51].

Two speech signals are chosen, and placed at positions [4.8, 3.25, 1.5] and

[2.75, 3.8, 1.5], whose azimuth angles are respectively 60 and -30 degrees with

reference to the normal to the microphones. Then the FastIVA method is

used to separate the mixtures. The result is shown in Fig. 4.4. The frequency

bin range [0,512] corresponds to [0, 4000]Hz as the sampling frequency is

8kHz. The upper part of the figure is the performance index, the closer it

is to zero, the better the separation performance. And the bottom part is

the permutation measurement. It is clear that there is a block permutation

problem. Thus the mixtures can not be properly separated by FastIVA. The

objective measurements are shown in Table 4.1. SDR is 2.81dB and SIR is

4.12dB, which also confirms that it is still mixed.
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Figure 4.4. Separation performance of FastIVA. The upper part is
the performance index figure, and the bottom part is the permutation
measurement figure.

Then, the proposed AVIVA method is used to separate the mixtures.

The result is shown in Fig. 4.5. It confirms that the block permutation
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problem has been solved. As such, the performance is improved, which

can be verified by the performance index figure in Fig. 4.5. Moreover, the

objective measurement SDR is 6.11dB and SIR is 7.35dB, which confirms

the mixtures are better separated.
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Figure 4.5. Separation performance of AVIVA. The upper part is
the performance index figure, and the bottom part is the permutation
measurement figure.

Then a 3×3 mixing case is used to confirm the block permutation prob-

lem, for which the microphone positions are [3.46, 2.50, 1.50], [3.50, 2.50,

1.50] and [3.54, 2.50, 1.50] respectively. Three speech signals are chosen,

and placed at positions [4.80, 3.25, 1.5], [3.50, 4.00, 1.50] and [2.75, 3.8, 1.5],

whose azimuth angles are respectively 60, 0 and -30 degrees with reference

to the normal to the microphones. For the 3 × 3 case, it is hard to use

the permutation measurement directly, and the permutation measurement

of each 2 × 2 sub matrix in the 3 × 3 matrix needs to be calculated. The

FastIVA algorithm is first used to separate the mixtures, and Fig. 4.6 shows

one permutation measurement which has the block permutation problem
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between source 1 and source 3. For the frequencies above frequency bin

220, the mean value of the permutation measurement is negative, whereas

for the other frequencies, the mean value is positive, which shows the block

permutation problem. And the objective results shown in Table 4.1 confirm

the bad separation, the SDR is 0.12dB and SIR is 1.06dB.
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Figure 4.6. One permutation measurement of the separation result
for three sources when using FastIVA.

Then the AVIVA approach is used to separate the mixtures. The per-

mutation measurement is shown in Fig. 4.7. Combining with the objective

measurements SDR and SIR, which are 6.63dB and 8.42dB respectively, it

confirms that the block permutation problem has been solved.

These simulations have confirmed that the block permutation problem

can happen, and the experimental results verify that the AVIVA algorithm

can avoid the block permutation problem successfully by using a proper

initialization.
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Figure 4.7. One permutation measurement of the separation result
for three sources when using AVIVA.

Table 4.1. Separation performance comparison when block permuta-
tion problem happens

FastIVA FastIVA AVIVA AVIVA
SDR(dB) SIR(dB) SDR(dB) SIR(dB)

two sources 2.81 4.12 6.11 7.35
three sources 0.12 1.06 6.63 8.42

4.5.2 Experiments in Noisy and Reverberant Room Environment

In the second simulation, the separation performance of the AVIVA approach

in a noisy environment is shown for a multisource case. Moreover, it also

shows that the AVIVA approach can achieve better separation performance

in a highly reverberant environment. The positions of the sources and micro-

phones are assumed known to generate different reverberant environments

by changing the absorption coefficients of the image method. A 2 × 2 mix-
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ing case is used, for which the microphone positions are [3.48, 2.50, 1.50]

and [3.52, 2.50, 1.50] respectively. The noise is assumed to be Gaussian dis-

tributed and its standard deviation is selected to be 2.5% of the maximum

magnitude of the speech signal. Different speech signals are chosen from the

TIMIT dataset [38]. This simulation is used to show the AVIVA algorithm

is suitable for different kinds of mixtures, and can achieve a better separa-

tion performance with faster convergence in a noisy environment. All the

experiment parameters are the same as the 2 × 2 case in experiment 4.5.1.

The separation performance is also evaluated by SDR and SIR.

First of all, it shows that the block permutation problem still can happen

when using the TIMIT dataset in a noisy environment. Two speech signals

are chosen from the TIMIT dataset, placed at positions [4.8, 3.25, 1.5] and

[2.75, 3.8, 1.5], whose azimuth angles are respectively 60 and -30 degrees

with reference to the normal to the microphones. FastIVA and AVIVA are

used to separate the mixtures respectively. The results are shown in Fig. 4.8

and Fig. 4.9. When using the FastIVA algorithm, the objective separation

performance measures SDR and SIR are 0.19dB and 2.45dB, which confirms

the limited separation performance. When using the AVIVA approach, the

block permutation problem is solved and the SDR and SIR are 6.43dB and

14.90dB which indicate a good separation performance.

Two different speech signals are chosen randomly from the TIMIT dataset

and these are convolved into two mixtures. Then FastIVA and AVIVA are

used to separate the mixtures respectively. Next, the source positions are

changed to repeat the simulation. For every pair of speech signals, three

different azimuth angles for the sources relative to the normal to the micro-

phone array are set for testing, these angles are selected from 30, 45, 60 and

-30 degrees. After that, another pair of speech signals is chosen to repeat

the above simulations. In total, five different pairs of speech signals are used

(including combinations with one male speech signal and one female speech
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Figure 4.8. Separation performance of FastIVA in the noisy environ-
ment. The upper part is the performance index figure, and the bottom
part is the permutation measurement figure.

signal, combinations with two male speech signals and combinations with

two female speech signals), and the simulation are repeated for 15 times

at different positions. Table 4.2 shows the average separation performance

for each pair of speech signals. The convergence advantage of the AVIVA

approach is also considered.

Table 4.2. Separation performance comparison in noisy environment.

FastIVA AVIVA
iter SDR(dB) SIR(dB) iter SDR(dB) SIR(dB)

mixtures 1 30 3.68 7.00 21 6.34 10.70
mixtures 2 28 6.60 10.68 25 7.01 11.47
mixtures 3 23 7.51 14.16 14 7.61 14.41
mixtures 4 26 6.33 11.27 11 6.76 12.79
mixtures 5 22 6.24 12.38 15 6.45 13.30

The results shown in Table 4.2 confirm the advantage of the proposed
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Figure 4.9. Separation performance of AVIVA in the noisy environ-
ment. The upper part is the performance index figure, and the bottom
part is the permutation measurement figure.

AVIVA algorithm in that it can achieve a faster convergence and better

separation performance in a noisy environment. The FastIVA is already

a fast form algorithm, however, the AVIVA can improve the convergence

speed approximately by 60%. Meanwhile, the separation performances are

also improved generally. Comparing with the FastIVA algorithm, the aver-

age further improvement in SDR is approximately 0.75dB, and the average

further improvement in SIR is approximately 1.4dB.

Then, a pair of speech signals are chosen randomly from the TIMIT

dataset and placed at the positions whose azimuth angles are 60 and -30

relative to the normal to the microphone array. The room reverberation

RT60 changed from 200ms to 700ms to test the separation ability of FastIVA

and AVIVA algorithms in a highly reverberant environment. The results are

shown in Fig. 4.10 and Fig. 4.11. The experimental results indicate that

the AVIVA approach can consistently achieve better separation performance
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than FastIVA algorithm in different reverberant environments. Comparing

with the FastIVA algorithm, the average further improvements in SDR and

SIR are 2.4dB and 2.9dB respectively.
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Figure 4.10. SDR comparison in different reverberant environments.

4.5.3 Experiments by Using the Real Room Recordings

In the last simulation, the real room recordings AV16.3 corpus are used to

test the proposed AVIVA algorithm [39]. “16.3” stands for 16 microphones

and 3 cameras, recorded in a fully synchronized manner. The “seq37-3p-

0001” recording is used to perform the experiment, which contains three

speakers. Fig. 4.12 and Fig. 4.13 show the room environment, the positions

of microphone arrays and the positions of the three speakers. There are two

microphone arrays, three microphones (mic3, mic5 and mic7) from micro-

phone array 1 are chosen which is in the red circle. The audio sampling

frequency of the recording is 16kHz. The RT60 is approximately 700ms,
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Figure 4.11. SIR comparisons in different reverberant environments.

which means that it is a highly reverberant environment and the accuracy

of audio localization will be seriously affected. For this simulation, the pro-

posed pitch based evaluation method is used, and the pitch threshold is set

to 5, which has been found empirically.

The recorded speech is extracted from 200s to 205s, during which three

speakers are speaking simultaneously. Then, the positions of the speakers are

obtained by using the video information. After that, FastIVA and AVIVA

are applied respectively. The experimental results are shown in Fig. 4.14,

Fig. 4.15, Fig. 4.16 and Table 4.3. The convergence advantage of the AVIVA

approach is considered.

Fig. 4.14 shows that the pitches of the mixed signals are all mixed. Fig.

4.15 is the separation result by using FastIVA. Although the pitches are

separated to some extent, there are still many mixed pitches. Fig. 4.16 is

the separation results by using AVIVA. It shows that the pitches are better
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Figure 4.12. Room environment for one of the AV16.3 corpus record-
ings. A single video frame from camera 1.

Table 4.3. Separation performance for the real room recordings.

Time slot FastIVA FastIVA AVIVA AVIVA
iterations separation rate iterations separation rate

200s-205s 70 0.03 49 0.14
220s-225s 192 0.05 54 0.06
240s-245s 58 0.20 56 0.23
200s-220s 77 0.14 71 0.16

separated compared with the result of FastIVA. The objective evaluation

separation rate is shown in Table 4.3. Then different time slots are chosen

to repeat the simulation, and the results are also shown in Table 4.3. It is

highlighted that all the three speakers in this experiment are all male, and

the proposed pitch based evaluation method still works well. The experi-

mental results indicate that the proposed AVIVA algorithm can be used in a

real multisource room environment successfully with faster convergence and

better separation performance than FastIVA.
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Figure 4.13. Room environment for one of the AV16.3 corpus record-
ings. A single video frame from camera 2.

4.6 Summary

In this chapter, firstly, the block permutation problem of FastIVA was ana-

lyzed. Then an audio video based FastIVA algorithm was proposed, which

can use the geometric information obtained from video to set a proper ini-

tialization. The proposed algorithm can avoid the block permutation prob-

lem of independent vector analysis methods. Moreover, it can also achieve

a faster and better separation performance in a noisy environment and a

highly reverberant environment when compared with FastIVA. Meanwhile,

a pitch based evaluation method was also proposed for the real multisource

dataset, which doesn’t need any prior information such as the mixing filters

and source signals. The experimental results confirmed the advantages of

the proposed AVIVA algorithm, and also verified that the proposed pitch

based evaluation method can be used for comparing the separation perfor-

mance. In the next chapter, a new source prior will be proposed to improve

the separation performance of IVA algorithms.
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Figure 4.14. The pitch tracks of the mixed signals.
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Figure 4.15. The pitch tracks of the separated signals by FastIVA.
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Figure 4.16. The pitch tracks of the separated signals by AVIVA.



Chapter 5

IVA WITH MULTIVARIATE

GENERALIZED GAUSSIAN

SOURCE PRIOR

5.1 Introduction

The core idea of IVA algorithms applied to frequency domain BSS is preserv-

ing inter-frequency dependencies for individual sources. The nature of the

score function used in the algorithm derivation is crucial in this process [27].

The nonlinear score function is derived from the source prior, therefore an

appropriate source prior is needed. For the original IVA algorithms, a spher-

ically symmetric distribution is adopted as the source prior, which implies

the dependencies between different frequency bins are all the same. How-

ever, the dependencies between frequency bins should be variable. In order

to describe the dependency structure better, a chain type overlapped source

prior has been proposed [33]. More recently, a harmonic structure depen-

dency model has been proposed [34]. Another possible source prior is the

Gaussian mixture model, whose advantage is that it enables the IVA algo-

rithms to separate a wider class of signals [35] [36]. However, for all of these

source priors, the covariance matrix of each source vector is an identity ma-

trix because the Fourier basis is an orthogonal basis. This implies that there

115
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is no correlation between different frequency bins. Moreover, the higher or-

der correlations between the elements of the source vectors are ignored when

separating the mixtures with IVA algorithms. Recently, an IVA algorithm

based upon a multivariate Gaussian source prior has been proposed to in-

troduce the second order correlations in the time domain [37]. However, it

is used in applications which have large second order correlations such as

functional magnetic resonance imaging studies. For the frequency domain

IVA algorithms, other correlation information should be exploited.

In [74], a family of lp-norm-invariant sparse probability density functions

is used as the source prior; then the separation performance of NG-IVA

algorithms is compared. The experimental results indicate that the spherical

symmetry pdf, i.e. p = 2, is suitable for modeling speech. The sparseness

parameter is also discussed, and it is claimed that the best separation can

be obtained when the sparseness parameter is around 7.

In this chapter, in order to satisfy the third objective of this thesis, a

particular multivariate generalized Gaussian distribution is adopted as the

source prior, which also belongs to the family of l2-norm-invariant sparse

probability density functions, and the sparseness parameter is chosen to be

3
2 . This proposed source prior has heavier tails compared with the original

multivariate Laplacian distribution. It can preserve the dependency across

different frequency bins in a similar way as when the original multivariate

Laplace distribution is used to derive the IVA algorithm. Moreover, the

nonlinear score functions which are derived based on the proposed source

prior additionally contain fourth order relationships between the elements

of each source vector, thus they contain more information describing the

dependency structure which can thereby better preserve the inter-frequency

dependency to achieve an improved separation performance, as suggested by

Hyvärinen [75]. The experimental results show that using the new source

prior can consistently achieve improved separation performance. The IVA
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algorithm with the source prior whose sparseness parameter is around 7

is found not to be robust in that it not always increases the separation

performance.

5.2 Multivariate Generalized Gaussian Source Prior

In order to improve the separation performance, a new multivariate source

prior which can better retain the dependency between different frequency

bins is needed. The multivariate generalized Gaussian distribution is found

to be suitable for being the source prior for IVA.

The univariate Laplace distribution is a special case of the univariate

generalized Gaussian distribution which takes the form

p(si) ∝ exp
(
−

( |si − µ|
α

)β)
(5.2.1)

where α, β ∈ R+ and are respectively scale and shape parameters. If α is

chosen properly, it becomes the Gaussian distribution when β = 2, and it

is the Laplace distribution when β = 1. Moreover, as β reduces the heavier

the tails become.

On the other hand, the family of multivariate generalized Gaussian dis-

tributions has the form

p(si) ∝ exp
(
−

( 1

α

√
(si − µi)†Σ

−1
i (si − µi)

)β)
(5.2.2)

when α = 1 and β = 1, it is the multivariate Laplace distribution adopted

by the original IVA algorithm [27].

To derive a new nonlinear score function, β = 2
3 and α = 1 are set to

yield

p(si) ∝ exp
(
− 3

√
(si − µi)†Σ

−1
i (si − µi)

)
(5.2.3)

the target multivariate generalized Gaussian source prior. This proposed

source prior has a heavier tail than the original one, which can have advan-
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tage in separating speech-like non-stationary signals [76].

This proposed source prior can also preserve the inter-frequency depen-

dencies within each source vector following the approach in [27].

It begins with the definition of a K-dimensional random variable

si = γ
3
4 ξi + µi (5.2.4)

where γ is a scalar random variable, and ξi obeys a generalized Gaussian

distribution which has the form:

p(ξi) ∝ exp
(
−

(ξ†iΣ−1
i ξi

2
√
2

) 2
3
)
. (5.2.5)

If γ has a Gamma distribution of the form:

p(γ) ∝ γ
1
2 exp

(
− γ

2

)
(5.2.6)

then the proposed source prior can be achieved by integrating the joint

distribution of si and γ over γ as follows:

p(si) =

∫ ∞

0
q(si|γ)p(γ)dγ

= α1

∫ ∞

0
γ

1
2 exp

(
− 1

2

(((si − µi)
†Σ−1

i (si − µi))
2
3

γ
+ γ

))
dγ

= α2exp
(
− 3

√
(si − µi)†Σ

−1
i (si − µi)

)
(5.2.7)

where α1 and α2 are both normalization terms. Therefore, equation (5.2.7)

confirms that the proposed source prior has the dependency generated by γ.

In [74] Lee discusses the source priors suitable for IVA, which are termed

as the spherical symmetric sparse (SSS) source priors. A general form of

this source prior is described as:

p(si) ∝ exp(−(∥si∥p)
1
Ls ) = exp

(
−

(∑
k

|si(k)|p
) 1

pLs
)

(5.2.8)
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where ∥ · ∥p denotes the lp norm, and Ls is termed as the sparseness pa-

rameter. Lee suggested that the spherical symmetry assumption is suitable

for modeling the frequency components of speech, i.e. p = 2, and through

certain experimental studies found that the best separation performance can

be achieved when Ls is around 7.

The proposed source prior also belongs to this family. If choosing p =

2 to make it spherically symmetric, and choosing Ls = 3
2 , the proposed

source prior can be obtained. In the detailed experimental results in the

experimental section, inconsistent improvement in separation performance

will be shown when Ls is around 7, as proposed in [74], while the NG-IVA

which adopts the proposed source prior can consistently achieve improved

separation performance.

5.3 NG-IVA with the Proposed Source Prior

Applying this proposed source prior to derive the nonlinear score function

with the assumption that the mean vector of the sources is zero and the

covariance matrix is a diagonal matrix, the nonlinear function becomes

φ(k)(ŝi(1) . . . ŝi(K)) =
2 ŝi(k)
σi(k)

3 3

√(∑K
k′=1

∣∣∣ ŝi(k′)σi(k′)

∣∣∣2)2
. (5.3.1)

If the equation under the cubic root is expanded, it can be written as:

( K∑
k′=1

∣∣∣ ŝi(k′)
σi(k′)

∣∣∣2)2
=

K∑
k′=1

∣∣∣ ŝi(k′)
σi(k′)

∣∣∣4 +∑
a ̸=b

cab|ŝi(a)|2|ŝi(b)|2 (5.3.2)

which contains cross items
∑

a ̸=b cab|ŝi(a)|2|ŝi(b)|2, and cab is a scalar con-

stant between the a-th and b-th frequency bins. These terms are related to

the fourth order relationships between different components for each source

vector, and capture the level of interdependency between different frequency
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bins. Thus, this new multivariate nonlinear function includes important

information describing the dependency structure [75].

The use of such fourth order relationships of speech signals was not pre-

viously highlighted in frequency domain BSS based on IVA. An example of

the second order relationships and the fourth order relationships inherent to

a particular speech signal “si1010.wav” from the TIMIT database [38], with

8kHz sampling frequency and 1024 STFT length, will be shown. Fig. 5.1

is part of the image display of elements of the covariance matrix formed by

sample interrelationships between the elements of the signal vector, which

is correspondent to the low frequency bins. It is hard to observe any infor-

mation correspondent to the high frequency bins due to the limited energy.

Therefore, only part of the image is shown. It shows that only the diagonal

has significant second order relationships information. This is because of the

orthogonal Fourier basis.

Now a similar fourth order matrix is constructed to exploit the fourth

order relationships, which is structured as


E[|si(1)|2|si(1)|2] · · · E[|si(1)|2|si(K)|2]

...
. . .

...

E[|si(K)|2|si(1)|2] · · · E[|si(K)|2|si(K)|2]

 . (5.3.3)

Fig. 5.2 is part of this fourth order matrix, which is also correspondent

to the same low frequency bins as Fig. 5.1. It is evident that there are fourth

order relationships throughout the matrix not only on the diagonal. Thus,

such fourth order relationships should be exploited to help separation.

Next it will be shown that the proposed source prior is the best choice

to introduce the fourth order relationship as shown in equation (5.3.2). Ac-

cording to equation (5.2.2), if assuming α = 1, the source prior can have the
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Figure 5.1. Second order inter-frequency relationships for the speech
signal “si1010.wav”, x and y dimensions correspond to frequency bins
1 to 128 of 512.

general form

p(si) ∝ exp
(
−

( K∑
k=1

|si(k)|2
)β)

(5.3.4)

And the nonlinear score function derived from this source prior is

φ(k)(ŝi(1) . . . ŝi(K)) =
2βŝi(k)

(
∑K

k′=1 |ŝi(k′)|2)1−β
(5.3.5)

In order to preserve the fourth order relationship as shown in equation

(5.3.2), the root should be an odd number. Thus the following condition

must be satisfied

1− β =
2

2I ′ + 1
(5.3.6)
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Figure 5.2. Fourth order inter-frequency relationships for the speech
signal “si1010.wav”, x and y dimensions correspond to frequency bins
1 to 128 of 512.

where I ′ is a positive integer. Then the condition for β can be obtained.

β =
2I ′ − 1

2I ′ + 1
(5.3.7)

On the other hand, β is the shape parameter of the generalized multi-

variate Gaussian distribution. In order to make the proposed source prior

heavier tail and more robust when separating the statistically non-stationary

signals compared with the original source prior whose β is 1/2, β should be

less than the 1/2. Thus

2I ′ − 1

2I ′ + 1
<

1

2
(5.3.8)

Finally, I ′ = 1 is the only solution, and the correspondent β is 1/3, as

proposed in this chapter.
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5.4 FastIVA with the Proposed Source Prior

Fast fixed-point independent vector analysis is a rapidly converging form of

IVA algorithm, which has been introduced in Chapter 2. Newton’s method

is adopted in the update, which converges quadratically and is free from se-

lecting an efficient learning rate. In order to apply Newton’s method in the

update rules, a quadratic Taylor series polynomial approximation is intro-

duced in the notations of complex variables which can be used for a contrast

function [29]. The cost function used by FastIVA is as follows:

JFastIV A =

N∑
i=1

(
E
[
F (

K∑
k=1

|ŝi(k)|2)
]
−

K∑
k=1

λ
(k)
i (wi(k)

†wi(k)− 1)
)

(5.4.1)

where F (·) is the nonlinear function, which can take on several different

forms as discussed in [29]. It is a multivariate function of the summation of

the desired signals in all frequency bins. With normalization, the learning

rule is:

wi(k)←E
[
F

′
(

K∑
k′=1

|ŝi(k′)|2) + |ŝi(k)|2F
′′
(

K∑
k′=1

|ŝi(k′)|2))
]
wi(k)

−E
[
(ŝi(k))

∗F
′
(

K∑
k′=1

|ŝi(k′)|2)x(k)
] (5.4.2)

If this is used for all sources, an unmixing matrix W (k) can be constructed

which needs to be decorrelated with

W (k)← (W (k)(W (k))†)−1/2W (k). (5.4.3)

When the multivariate Laplacian distribution is used as the source prior

for the FastIVA algorithm, with the zero mean and unity variance assump-

tions, the nonlinear function takes the form

F (
K∑

k′=1

|ŝi(k′)|2) =
( K∑
k′=1

|ŝi(k′)|2
) 1

2 . (5.4.4)
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When the proposed multivariate generalized Gaussian distribution is

used as the source prior, with the same assumptions, the nonlinear func-

tion becomes:

F (

K∑
k′=1

|ŝi(k′)|2) =
( K∑
k′=1

|ŝi(k′)|2
) 1

3 . (5.4.5)

Therefore, the first derivative becomes:

F ′(

K∑
k′=1

|ŝi(k′)|2) =
2

3 3

√
(
∑K

k′=1 |ŝi(k′)|2)2
. (5.4.6)

It is very similar to equation (5.3.1), and it also contains cross terms

which can exploit the fourth order relationships between different frequency

bins. Thus, the FastIVA algorithm with the proposed source prior is likely

to help improve the separation performance.

5.5 AuxIVA with the Proposed Source Prior

As introduced in Chapter 2, the update rules for AuxIVA contains two parts,

i.e. the auxiliary variable updates and unmixing matrix updates. In sum-

mary, the update rules are as follows:

ri =

√√√√ K∑
k=1

|w†
i (k)x(k)|2 (5.5.1)

Vi(k) = E[
g′R(ri)

ri
x(k)x(k)†] (5.5.2)

wi(k) = (W (k)Vi(k))
−1ei (5.5.3)

wi(k) =
wi(k)√

w†
i (k)Vi(k)wi(k)

. (5.5.4)

The contrast function g(z) is derived from the source prior [46]. For the
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original AuxIVA algorithm,

g(z) = r (5.5.5)

where r = ∥z∥2.

By using the proposed source prior, a new contrast function can be ob-

tained

g(z) = r
2
3 (5.5.6)

both the original and new proposed contrast function belong to Sg.

During the update process of the auxiliary variable Vi(k) as (5.5.2), it

is noticed that
g′R(ri)

ri
is used to retain the dependency between different

frequency bins for source i. In this chapter, as defined previously, gR(r) = r
2
3 .

Therefore

g′R(ri)

ri
=

2

3r
4
3
i

=
2

3 3

√
(
∑K

k′=1 |ŝi(k′)|2)2
(5.5.7)

which has the same form as equation (5.4.6). The update rules also contain

the terms to exploit the fourth order relationships within the speech signal

vectors and should thereby help to achieve a better separation performance,

which will be assessed by simulation study.

5.6 Experimental Results

In this section, it will be shown that all three types of IVA algorithm with

the proposed multivariate generalized Gaussian source prior can improve the

separation performance consistently when measurements are taken in a re-

verberant room environment. In these experiments, the TIMIT dataset [38]

is used. Each speech signal is approximately seven seconds long. The image

method is used to generate the room impulse responses [50], and the size of

the room is 7 × 5 × 3m3. The STFT length is 1024, and the reverberation

time RT60 = 200ms. A 2× 2 mixing case is used, for which the microphone

positions are [3.48, 2.50, 1.50]m and [3.52, 2.50, 1.50]m respectively. The
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sampling frequency is 8kHz. The separation performance is evaluated ob-

jectively by SDR and SIR [51]. Fig. 5.3 is the plan view of the experimental

setting.

Figure 5.3. Plan view of the experiment setting in the room environ-
ment with two microphones and two sources

In the first experiment, two different speech signals are chosen randomly

from the TIMIT dataset and convolved into two mixtures. Then the original

NG-IVA, the NG-IVA method with the proposed source prior and the NG-

IVA with Lee’s SSS source prior where the sparseness parameter Ls = 6, 7

and 8, around the value suggested in [74], are all used to separate the mix-

tures respectively. Then the source positions are changed to repeat the

simulation. For every pair of speech signals, three different azimuth angles

for the sources relative to the normal to the microphone array are set for

testing, these angles are selected from 30, 45, 60 and -30 degrees. After that,

another pair of speech signals is chosen to repeat the above simulations. In

total, ten different pairs of speech signals are used, and the simulation is

repeated 30 times at different positions. Tables 5.1 and 5.2 show the average



Section 5.6. Experimental Results 127

separation performance for each pair of speech signals in terms of SDR and

SIR in dB.

Table 5.1. Separation performance comparison in SDR(dB)

original proposed SSS Ls=6 SSS Ls=7 SSS Ls=8
mixture 1 12.27 12.90 12.62 4.74 5.88
mixture 2 18.13 18.47 18.39 18.34 18.27
mixture 3 8.88 11.83 11.44 11.41 7.84
mixture 4 15.57 16.92 15.48 5.95 6.29
mixture 5 18.10 18.69 15.78 15.44 19.44
mixture 6 18.81 19.58 5.04 3.71 5.41
mixture 7 15.94 16.59 15.35 8.63 8.82
mixture 8 15.29 15.75 16.05 16.03 16.01
mixture 9 18.58 19.05 19.21 17.35 10.05
mixture 10 18.80 19.31 0.76 0.78 0.79

Table 5.2. Separation performance comparison in SIR(dB)

original proposed SSS Ls=6 SSS Ls=7 SSS Ls=8
mixture 1 14.08 14.84 14.82 5.62 7.07
mixture 2 19.57 19.86 19.86 19.81 19.75
mixture 3 10.72 13.74 13.22 13.19 9.14
mixture 4 16.98 18.46 16.89 7.16 7.55
mixture 5 20.14 20.47 17.32 16.94 20.75
mixture 6 20.30 20.98 5.92 4.35 6.33
mixture 7 17.88 18.40 16.39 10.73 9.93
mixture 8 19.88 20.41 20.65 20.61 20.56
mixture 9 20.75 20.89 20.85 18.80 11.00
mixture 10 20.28 20.60 1.45 1.48 1.51

The experimental results show clearly that IVA with the proposed source

prior can consistently improve the separation performance. However, for the

IVA with SSS source prior, the separation improvement is not consistent. For

example, when Ls = 7, in some cases there is essentially no separation such

as mixtures 1, 6 and 10. Even though it can achieve better separation than

the original IVA, it is still no better than the proposed method. Only for
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mixture 8, does it achieve the best separation performance. Therefore, the

IVA with the proposed source prior can generally achieve better separation

performance. Based on totally 30 tests, the average SDR improvement and

SIR improvement are approximately 0.9dB and 0.8dB, respectively.

Then the performance of the IVA with the proposed source prior in

different reverberant room environments is tested. Two speech signals from

the TIMIT dataset are selected randomly and convolved into two mixtures.

The azimuth angles for the sources relative to the normal to the microphone

array are set as 60 and -30 degrees. Both the original IVA and the proposed

method are used to separate the mixtures. The results are shown in Fig.

5.4 and Fig. 5.5, which show the separation performance comparisons in

different reverberant environments. Fig. 5.4 and Fig. 5.5 show the SDR and

SIR comparison respectively. They indicate that the proposed algorithm

can consistently improve the separation performance in different reverberant

environments, up to a reverberation time of 450ms. The advantage reduces

with increasing RT60 due to the greater challenge in extracting the individual

source vectors.

In the second experiment, all the experimental settings and the processes

are all the same as the first experiment. Here five pairs of speech signals from

the TIMIT dataset are selected and convolved into mixtures. The original

FastIVA algorithm and the FastIVA algorithm with the proposed source

prior are used to separate the speech mixtures. Then the source positions

are changed to repeat the experiment, the average separation performance

comparison is shown in Table 5.3. It shows that the separation performance

can be improved by adopting the proposed source prior. The average SDR

improvement and SIR improvement both are approximately 0.6dB.

The separation performance of these two algorithms are also compared

in different reverberant room environments as in the first experiment. The

SDR and SIR comparisons are shown in Fig. 5.6 and Fig. 5.7. They show
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Figure 5.4. SDR comparison between original and proposed IVA al-
gorithms as a function of reverberation time.
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Figure 5.5. SIR comparison between original and proposed IVA algo-
rithms as a function of reverberation time.
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Table 5.3. Separation performance comparison in terms of SDR and
SIR measures in dB

Mixtures mix1 mix2 mix3 mix4 mix5
Original FastIVA (SDR) 17.77 19.48 14.75 18.12 16.79
Proposed FastIVA (SDR) 18.04 20.63 15.08 18.88 17.31
Original FastIVA (SIR) 19.32 21.01 17.04 19.80 19.18
Proposed FastIVA (SIR) 19.59 22.04 17.31 20.51 19.74

the SDR and SIR comparison respectively. The results indicate that the Fas-

tIVA algorithm with the proposed source prior can improve the separation

performance, but again the advantage is reduced with increasing RT60.
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Figure 5.6. SDR comparison between original and proposed FastIVA
algorithms as a function of reverberation time.

In the third experiment, the second experiment is repeated by using the

original AuxIVA and AuxIVA with the proposed source prior. Five different

pairs of speech signals are used, and the simulation is repeated 15 times at

different positions. Table 5.4 shows the average separation performance for

each pair of speech signals in terms of SDR and SIR. The average SDR and
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Figure 5.7. SIR comparison between original and proposed FastIVA
algorithms as a function of reverberation time.

SIR improvements are approximately 1.7dB and 1.9dB respectively. The

results confirm the advantage of the proposed AuxIVA method which can

better preserve the dependency between different frequency bins of each

source and thereby achieve a better separation performance.

Table 5.4. Separation performance comparison in terms of SDR and
SIR measures in dB

Mixtures mix1 mix2 mix3 mix4 mix5
Original AuxIVA (SDR) 12.13 14.62 9.86 19.23 18.64
Proposed AuxIVA (SDR) 14.82 16.30 12.45 19.92 19.50
Original AuxIVA (SIR) 14.06 16.72 11.59 20.54 20.12
Proposed AuxIVA (SIR) 17.26 18.42 14.58 21.20 20.90

Then the performance of the proposed AuxIVA method in different re-

verberant room environments is also tested. The experimental settings are

all the same as the first experiment. The results are shown in Fig. 5.8 and

Fig. 5.9, which show the separation performance comparison in different
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reverberant environments. Fig. 5.8 and Fig. 5.9 show the SDR and SIR

comparison respectively. It indicates that the AuxIVA algorithm with the

proposed source prior can consistently improve the separation performance

in different reverberant environments.
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Figure 5.8. SDR comparison between original and proposed AuxIVA
algorithms as a function of reverberation time.

Examing the results for the three algorithms, the proposed source prior

offers the maximum improvement in the AuxIVA algorithm. It is difficult

however to make a general recommendation which is the best algorithm due

to the variability of performance with different speech signals and mixing

environments.

5.7 Summary

In this chapter, a particular multivariate generalized Gaussian source prior

was proposed to adopt in independent vector analysis. This particular source

prior can better preserve the inter-frequency dependencies as compared to
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Figure 5.9. SIR comparison between original and proposed AuxIVA
algorithms as a function of reverberation time.

the original multivariate Laplace source prior. When used in IVA algorithms,

it introduced fourth order relationships commonly found in speech signals

to improve the learning process and enhance separation. Three basic forms

of IVA algorithms with the proposed source prior, i.e. NG-IVA, FastIVA

and AuxIVA, were all analyzed with non-stationary source signals, and the

experimental results confirm the advantage of adopting the proposed source

prior particular for smaller reverberation time. In the next chapter, the

dependency within the frequency domain speech signals is further exploited,

and another new source prior is proposed for IVA algorithms.



Chapter 6

COPULA BASED

INDEPENDENT VECTOR

ANALYSIS WITH THE

MULTIVARIATE STUDENT’S

T SOURCE PRIOR

6.1 Introduction

For IVA, new statistical models which can better preserve the dependency

within the source vector still need to be exploited to satisfy the third ob-

jective of this study. The dependency between different frequency bins can

be nonlinear, and the simple linear dependency, i.e the Pearson correlation,

can not always describe it accurately. The copula concept is widely used for

modeling nonlinear dependency, and was first widely used in the field of fi-

nance [77]. Nowadays, it has been adopted in various engineering fields. For

example, a copula is used for modeling stochastic dependence in power sys-

tem uncertainty analysis in [78]. Moreover, the Gaussian copula is adopted

to model texture in image in [79]. However, few works introduce the copula

in the speech separation field, especially for IVA. As the copula is a cen-

134
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tral tool for modeling nonlinear dependency, the copula should be exploited

in IVA. Thus, the IVA algorithm can thereby achieve improved separation

performance with a better dependency structure to retain the dependency

within the source vector.

In this chapter, the t copula is used to construct a multivariate student’s t

distribution with univariate student’s t marginal distributions as the source

prior for IVA. Recently, the student’s t distribution has been popular for

modeling speech signals [80, 81]. The student’s t distribution is a super

Gaussian distribution, which has heavier tails than the Gaussian distribution

and is suitable for modeling certain speech signals. The t copula is chosen

because it has tail dependence, which means if one variable has an extreme

value, other variables are expected to have extreme values [82]. Due to the

heavy tail property of certain speech signals, many useful samples can be in

the tails. Thus the tail dependence can be an advantage when modeling the

dependency between different frequency bins of a speech signal. This will

be shown in this chapter. Moreover, it will be shown that the multivariate

student’s t distribution constructed by the t copula with univariate marginal

student’s t distributions can retain the dependency within each source vector.

The NG-IVA algorithm with the proposed source prior will be tested in

different room environments, and the experimental results will confirm the

advantage of the proposed multivariate student’s t source prior.

6.2 Copula Introduction

Copulas are used to model dependence of several random variables, and have

been widely developed in the finance field. A copula is a joint cumulative

distribution function (cdf). The dependency structure is entirely described

by itself, and is not related to the marginal distribution. The definition of

copula is [82]:
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Definition 1: A d-dimensional copula C : [0, 1]d :→ [0, 1] is a function

which is a cumulative distribution function with uniform marginals.

C(u) = C(u1, · · · , ud) (6.2.1)

The basic and most important theorem for a copula was proposed by

Sklar in 1959 [82].

Sklar’s theorem: Consider a d-dimensional cdf F with marginals F1, · · · , Fd.

There exists a copula C, such that

F (z1, · · · , zd) = C(F1(z1), · · · , Fd(zd)) (6.2.2)

for all zi in [−∞,∞], i = 1, · · · , d. If Fi is continuous for all i = 1, · · · , d then

C is unique; otherwise C is uniquely determined only onRanF1×· · ·×RanFd,

where RanFi denotes the range of the cdf Fi. It is also noticed that ui =

Fi(zi).

If C is continuous and differentiable, the copula density function c can

by achieved by taking the d-th order partial derivative of C.

c(u) =
∂dC(u1, · · · , ud)

∂u1 · · ·ud
(6.2.3)

Therefore, the multivariate joint probability density function can be de-

rived according to equations (6.2.2) and (6.2.3). The joint probability density

function is obtained by taking the d-th order partial derivative of equation

(6.2.2).

p(z1, · · · , zd) =
∂dF (z1, · · · , zd)

∂z1 · · · zd

=
∂dC(F1, · · · , Fd)

∂F1 · · ·Fd

∂F1

∂z1
· · · ∂Fd

∂zd

= c(F1, · · · , Fd)

d∏
i=1

pi(zi)

(6.2.4)
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By observing this multivariate joint pdf, it is evident that marginal pdfs

are independent, but the copula density function c is used to describe the

dependency structure among all the marginal pdfs. When the copula density

c equals to unity, it is the independent case.

There are several copula families which have been proposed, such as the

Gaussian copula, Archimedean copulas and t copula [77]. In this chapter,

the t copula is the focus, since an algebraic update equation for IVA can be

derived.

The t copula can be used to represent the dependency structure implicit

in a multivariate student’s t distribution [83], which has the form

C(u) =

∫ F−1
1

−∞
· · ·

∫ F−1
d

−∞

Γ(v+d
2 )

Γ(v2 )(
√

πv|Σ|)

(
1 +

z†Σ−1z

v

)− v+d
2
dz (6.2.5)

where F−1
i is the quantile function [84] of a standard univariate student’s t

distribution with v degrees of freedom; Σ is a positive definite matrix; Γ(·)

is the Gamma function.

The t copula density function takes the form [85]:

c(u1, · · · , ud) =
Γ(v+d

2 )Γ(v2 )
d−1

|Σ|
1
2Γ(v+1

2 )d

∏d
i=1(1 +

|zi|2
v )

v+1
2

(1 + z†Σ−1z
v )

v+d
2

(6.2.6)

Fig. 6.1 is the bivariate case of a t copula density, and it is used to show

the property of the t copula. For a bivariate case,

Σ =

 1 ρ

ρ 1


where ρ is the correlation coefficient, and ρ = 0.7 in Fig 6.1.

One of the attractive properties of a t copula is the tail dependence.

Fig. 6.1 shows that the t copula has tail dependence, which means that if

one variable has an extreme value, another variable is most likely to have
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Figure 6.1. The copula density of a t copula with 4 degrees of freedom
and correlation coefficient ρ = 0.7

an extreme value as well. The two peaks in Fig. 6.1 correspond to the

copula density for the tails of two variables. It has a relative large value,

which means the dependency is strong. Fig 6.2 is another bivariate case of

t copula density with 4 degrees of freedom and ρ = −0.6.

For the t copula, even for the zero correlation, i.e ρ = 0, it still shows

tail dependency [82]. Fig 6.3 confirms this by showing that the copula is not

always unity.

Tail dependence has great advantage for modeling frequency domain

speech signals. The distribution for a frequency domain speech signal is

commonly a heavy tail distribution, which means most useful information

is likely to be in the tails. The tail dependence captures the dependency

between tails, thus it can emphasize the dependency among useful samples.
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Figure 6.2. The copula density of a t copula with 4 degrees of freedom
and correlation coefficient ρ = −0.6
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Figure 6.3. The copula density of a t copula with 4 degrees of freedom
and correlation coefficient ρ = 0
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6.3 Dependency within Frequency Domain Speech Signals

Now it will be shown that the t copula can be used to describe the depen-

dency structure within frequency domain speech signals. The Chi-plot is

used to observe the dependency [86]. It can be considered as an extension

of the scatter plot to illustrate the dependency. The scatter plot usually has

certain pattern when there are certain types of dependency. However, some-

times it is difficult to judge the pattern for some characteristic by only using

a scatter plot. Then the Chi-plot is proposed to provide a graph illustrating

the characteristic patterns, which is easier for observation.

Fig. 6.4 and Fig. 6.5 show the scatter plot and Chi-plot of two inde-

pendent random variables z1 and z2 respectively. In the scatter plot, there

is no pattern for the points. Meanwhile, in the correspondent Chi-plot, al-

most all the points are in the tolerance band, the band between two straight

lines [87], which corresponds to approximate 95% probability region. As for

the Chi-plot, the deviation from the tolerance band indicates a dependency

structure. The x axis of the Chi-plot is the measure of the distance from the

center of the dataset, which is denoted by lamda. The y axis is the correla-

tion coefficients between dichotomized values, which is denoted by Chi [86].

Let (x1, y1), . . . , (xn, yn) be a random sample from H̃, the joint distribution

function for a pair of random variables (X,Y ), and let I(.) be the indicator

function. The calculations of Chi and lamda are as follows:

H̃i =
∑
j ̸=i

I(xj ≤ xi, yj ≤ yi)/(n− 1) (6.3.1)

F̃i =
∑
j ̸=i

I(xj ≤ xi)/(n− 1) (6.3.2)

G̃i =
∑
j ̸=i

I(yj ≤ yi)/(n− 1) (6.3.3)

S̃i = sign[(F̃i − 0.5)(G̃i − 0.5)] (6.3.4)
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Chii = (H̃i − F̃iG̃i)/

√
F̃i(1− F̃i)G̃i(1− G̃i) (6.3.5)

lamdai = 4Simax((F̃i − 0.5)2, (G̃i − 0.5)2) (6.3.6)
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Figure 6.4. The scatter plot of two independent random variables.

Two random variables z1 and z2 with a bivariate t copula are generated,

whose correlation coefficient ρ = −0.6 and degrees of freedom v is 4. Fig. 6.6

and Fig. 6.7 show the scatter plot and Chi-plot of these two random variables

respectively. It clearly shows there is a pattern in the scatter plot, and an

obvious deviation from the tolerance band, which shows a strong dependency

structure. Thus, the t copula can generate a dependency structure.

Now it will be shown that even when the correlation coefficient is zero,

a dependency structure still exists. Two random variables with a bivariate t

copula with zero correlation and two degrees of freedom are generated. The

scatter plot and Chi-plot are shown in Fig. 6.8 and Fig. 6.9 respectively. By

observing the Chi-plot, which is different from the independent case, since
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Figure 6.5. The Chi-plot of two independent random variables.

some points deviate from the tolerance band. This indicates that a t copula

with zero correlation still has dependency structure.

For a frequency domain speech signal, it’s impossible to draw a figure

to show the dependency structure across all the frequency bins. Instead,

the dependency structure between two different frequency bins is observed

by showing the Chi-plot. A speech signal from the TIMIT database [38]

is randomly selected, which is “sa1.wav”, then the 1024 length STFT is

applied to transform it into frequency domain. By observing Fig. 6.10, it

can be seen that all the Chi-plots are similar to the t copula Chi-plot as

shown in Fig. 6.7 and Fig. 6.9. Fig. 6.10(a) indicates that the dependency

between adjacent frequency bins, i.e 50th and 51th frequency bins, is strong.

Fig. 6.10(b), Fig. 6.10(c), Fig. 6.10(d), Fig. 6.10(e), Fig. 6.10(f) shows

the dependency between 50th and 55th, 50th and 60th, 50th and 100th,

50th and 200th, 50th and 500th frequency bins respectively. These figures
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Figure 6.6. The scatter plot of two random variables with a t copula,
ρ = −0.6 and v = 4

illustrate that the dependency becomes weak when the two frequency bins

are far away. However, there is still dependency which can be described by a

t copula. Therefore, the t copula is appropriate to describe the dependency

structure within the frequency domain speech signals. In the next section,

a multivariate source prior will be constructed by using a t copula to be the

source prior for IVA.

6.4 IVA with the Multivariate Student’s t Source Prior

It has been found that t copula is suitable for modeling the dependence

structure for frequency domain speech signals. Thus a multivariate source

prior will be constructed by using a t copula in this section.

According to equation (6.2.4), the marginal density function must be

determined to construct the multivariate source prior. The marginal density
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Figure 6.7. The Chi-plot of two random variables with a t copula,
ρ = −0.6 and v = 4

function is used to describe the distribution of each frequency bin. The uni-

variate student’s t distribution is proposed as the marginal density function,

which takes the form:

p(si(k)) =
Γ(v+K

2 )
√
vπΓ(v2 )

(
1 +
|si(k)|2

v

)− v+1
2

(6.4.1)

The student’s t distribution has a heavier tail than the Gaussian distri-

bution, thus it can be suitable for modeling the spectrum of a speech signal.

The degrees of freedom parameter v can tune the variance and leptokurtic

nature of the distribution. With decreasing v, the tail of the distribution

becomes heavier.

According to equations (6.2.4), (6.2.6) and (6.4.1), the multivariate source
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Figure 6.8. The scatter plot of two random variables with a t copula,
ρ = 0 and v = 2

prior can be obtained

p(si) ∝
(
1 +

s†iΣ
−1
i si
v

)− v+K
2 (6.4.2)

which is a K-dimensional student’s t distribution. Fig. 6.11 is the prob-

ability density function for a two dimensional student’s t distribution. The

marginal probability density function is a univariate student’s t distribution.

However, the joint density function takes the form of equation (6.4.2) with

K = 2, which is different from the product of marginal probability density

functions. This indicates that different variables of the multivariate stu-

dent’s t distribution are dependent. Therefore, the multivariate student’s t

distribution can be used as a source prior to retain the dependence across

the frequency bins.

Due to the orthogonal Fourier basis, theoretically there is no correlation
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Figure 6.9. The Chi-plot of two random variables with a t copula,
ρ = 0 and v = 2

between different frequency bins. Thus Σi should be a diagonal matrix. Figs.

6.10(b), 6.10(c), 6.10(d), 6.10(e), 6.10(f) show that the dependency within

frequency domain speech signals is similar to the dependency described by

the t copula without correlation as shown in Fig. 6.9. As discussed in the last

section, the dependency still exists even without correlation. It is assumed

that Σi is an identity matrix, and equation (6.4.2) becomes

p(si) ∝
(
1 +

∑K
k=1 si(k)

v

)− v+K
2

(6.4.3)

When equation (6.4.3) is used to derive the score function of IVA, the

new nonlinear score function can be achieved

φ(k)(ŝi(1) · · · ŝi(k)) =
v +K

v

ŝi(k)

1 + 1
v

∑
|ŝi(k)|2

(6.4.4)

The coefficient v+K
v can be absorbed by the step size η in the update
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Figure 6.10. The Chi-plot of two frequency bins of a speech signal
“sa1.wav” from TIMIT dataset (a) 50th and 51th frequency bins (b)
50th and 55th frequency bins (c) 50th and 60th frequency bins (d) 50th
and 100th frequency bins (e) 50th and 200th frequency bins (b) 50th
and 500th frequency bins



Section 6.5. Experimental Results 148

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
i
(1)s

i
(2)

P
(s

i(1
),

s i(2
))

Figure 6.11. The probability density function of a multivariate stu-
dent’s t distribution

equation. Thus it can be normalized to unity. The performance of the IVA

algorithm with the proposed source prior will be tested in the next section.

6.5 Experimental Results

In this section, the NG-IVA algorithm with the proposed multivariate stu-

dent’s t distribution in different environments will be tested and the re-

sults will show that it can achieve an improved separation performance.

The speech signals are selected from the TIMIT dataset [38]. Each of the

speech signals is approximately seven seconds long, and the sampling fre-

quency is 8kHz. The image method is used to generate the room impulse

responses [50], and the size of the room is 7× 5× 3m3. A 2× 2 case is used,

for which the microphone positions are [3.48, 2.50, 1.50]m and [3.52, 2.50,



Section 6.5. Experimental Results 149

1.50]m respectively. The STFT length is set to be 1024. The separation

performance is evaluated objectively by SIR and SDR [51].

As for the selection of the degrees of freedom v, it is a very difficult

problem because what can be served is the speech mixtures instead of indi-

vidual clean speech signal. With v increasing, the tails of the distribution

will become lighter. The Gaussian distribution is the limiting case of the

student’s t distribution as v →∞. Thus, v should not be a large value. The

separation performance of algorithms with different small v values is tested,

the performance is essentially the same. In this section, v is set to be 4 for

all the experiments.

6.5.1 Experiment in Low Reverberation Room Environment

In the first experiment, the separation performance of NG-IVA algorithm

with the proposed source prior in a low reverberation room environment

is tested. The reverberation time RT60 is set to be 200ms. Two different

speech signals are chosen randomly from the TIMIT dataset and convolved

into two mixtures. Then the orignal NG-IVA algorithm and the NG-IVA

algorithm with the new source prior are used to separate the mixtures re-

spectively. Then the source positions are changed to repeat the simulation.

For every pair of speech signals, three different azimuth angles for the sources

relative to the normal to the microphone array are set for testing, these an-

gles are selected from 30, 45, 60 and -30 degrees. After that, another pair

of speech signals is chosen to repeat the above simulations. The separation

performance for each pair of speech signals is calculated by averaging the

performance in different positions. Table 6.1 and Table 6.2 show the sepa-

ration performance for ten different pairs of speech signals in terms of SDR

and SIR respectively.

50 different mixtures are also formed in total from the TIMIT database

to test the separation performance, and the average SDR and SIR improve-
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Table 6.1. Separation performance comparison in SDR

mixtures original(dB) proposed(dB) improvement(dB)
mixture1 18.81 20.12 1.31
mixture2 15.94 17.26 1.32
mixture3 9.97 11.73 1.76
mixture4 11.68 12.40 0.72
mixture5 18.80 19.91 1.11
mixture6 12.27 18.74 6.47
mixture7 8.88 11.10 2.22
mixture8 15.57 17.09 1.52
mixture9 18.10 19.50 1.4
mixture10 16.84 19.65 2.81

Table 6.2. Separation performance comparison in SIR

mixtures original(dB) proposed(dB) improvement(dB)
mixture1 20.30 21.43 1.13
mixture2 17.88 19.00 1.12
mixture3 12.08 12.77 0.69
mixture4 14.42 14.97 0.55
mixture5 20.28 20.95 0.67
mixture6 14.08 20.94 6.86
mixture7 10.72 12.57 1.85
mixture8 16.98 18.77 1.79
mixture9 20.14 20.80 0.66
mixture10 19.53 21.54 2.01

ments are 1.3dB and 1.1dB respectively. These improvements confirm the

advantage of the IVA algorithm with the proposed source prior in a low

reverberation room environment.

6.5.2 Experiment in Different Reverberant Room Environments

Then the separation performance of the NG-IVA algorithm with the pro-

posed source prior in different reverberant room environments are tested.

The reverberation time RT60 is set to be 200, 300, 400 and 500ms. All the
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experimental settings and procedures are the same as the first experiment.

Again the speech signals are selected from the TIMIT dataset to generate

mixtures. Five different pairs of mixtures are selected randomly to do the

experiments, and separation results in terms of SDR and SIR are shown

from Fig. 6.12 to Fig. 6.16. The rad bar represents the separation perfor-

mance of the proposed algorithm, and the blue bar represents the separation

performance of the original NG-IVA algorithm. The x axis is the reverber-

ation time RT60, and the y axis is SDR or SIR. It is shown that the red

bar is always higher than the blue bar in different room environments and

by using different mixtures, which means a better separation performance.

The figures confirm that the IVA algorithm with the proposed multivariate

source prior can consistently improve the separation performance in differ-

ent reverberant room environments. However, the improvement reduces with

increasing reverberation time due to the greater challenge in extracting the

individual source vectors.
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Figure 6.12. The separation performance in different reverberant en-
vironment for mixtures 1 (a) SDR (b) SIR
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Figure 6.13. The separation performance in different reverberant en-
vironment for mixtures 2 (a) SDR (b) SIR
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Figure 6.14. The separation performance in different reverberant en-
vironment for mixtures 3 (a) SDR (b) SIR
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Figure 6.15. The separation performance in different reverberant en-
vironment for mixtures 4 (a) SDR (b) SIR
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Figure 6.16. The separation performance in different reverberant en-
vironment for mixtures 5 (a) SDR (b) SIR



Section 6.5. Experimental Results 157

6.5.3 Experiment by Using the Real Room Recordings

In the last experiment, the real room recordings AV16.3 [39] corpus is used to

compare the separation performance of original NG-IVA and NG-IVA with

proposed source prior. The “seq37-3p-0001” recording is used to perform

the experiment, which contains three speakers. The room environment has

already been shown in the experiment section of Chapter 4. Three micro-

phones (mic3, mic5 and mic7) from microphone array 1 are chosen to collect

the mixtures. The audio sampling frequency of the recording is 16kHz. The

RT60 is approximately 700ms, which means that it is a high reverberant

environment.

The recorded speech is extracted from 210s to 215s, during which three

speakers are speaking simultaneously. This multi-speaker speech separation

problem is tried to be solved by using the original NG-IVA and NG-IVA

with the proposed source prior. As for the performance evaluation, the in-

formation about the mixing matrix and sources are both missing, thus it is

impossible to use the traditional SDR and SIR criteria. Thus the pitch based

evaluation method proposed in Chapter 4 is adopted. If the speech signals

are mixed, the pitches are also mixed as shown in Fig. 6.17. If the mix-

tures are separated, the pitches are separated as well as shown in Fig. 6.18.

The pitch based evaluation method can also provide an objective evaluation

criterion, i.e. the separation rate, which can be used to compare the sepa-

ration performance of different algorithms. The bigger the separation rate,

the more pitches are separated, which indicates a better separation. Fig.

6.17 and Fig. 6.18 show the pitch tracks of the mixtures and the pitches

of separated signals by using IVA with the proposed source prior. It’s hard

to observe the difference when using two NG-IVA algorithms by comparing

the pitches of the separated signals. The pitch track figure of the separated

signals is omitted when using original IVA, and the separation rate is used

to compare the separation performance when using different IVA algorithms
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as shown in Table 6.3. The experimental results show that the proposed

method can also achieve improvement by using real room recordings to solve

the multi-speaker speech separation problem.

Table 6.3. Separation rate comparison when using real room record-
ings

mixtures original proposed
separation rate 0.0379 0.2515 0.2794
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Figure 6.17. The time-varying pitch tracks of the mixtures

6.6 Summary

In this chapter, the dependency structure within the frequency domain

speech signals was further exploited by introducing copula theory. The t

copula was found suitable to model the inter-frequency dependency, which
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Figure 6.18. The time-varying pitch tracks of the separated signals
by using IVA algorithm with proposed source prior

was also confirmed by observing the Chi-plot between two frequency bins

of a real speech signal. Then, a multivariate student’s t distribution was

constructed by using the t copula density function and univariate student’s

t marginal distribution, which was adopted as the new source prior for the

NG-IVA algorithm. The separation performance was tested in different re-

verberant room environments and also by using real room recordings. All

the experimental results confirmed the advantage of this proposed source

prior.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

The contributions of this thesis are summarized below, followed by a discus-

sion on future works.

7.1 Conclusions

This study has provided enhanced independent vector analysis algorithms

for audio separation in a room environment. The contributions of this study

satisfy the three objectives mentioned in the introduction chapter. The first

contribution is improving the convergence speed of the natural gradient IVA

algorithm. The second contribution is highlighting the specific block per-

mutation problem and proposing corresponding robust solutions. The third

contribution is improving the separation performance by adopting a new

source prior to preserve the inter-frequency dependency within the frequency

domain speech signals. The details of the contributions are as follows:

In Chapter 2, besides the introduction of the fundamental knowledge of

CBSS and ICA, the original natural gradient IVA algorithm, fast fixed-point

IVA and auxiliary function based IVA were all discussed. Moreover, an adap-

tive step size natural gradient IVA algorithm was proposed in this chapter,

which can automatically tune the step size to achieve a faster convergence

compared with IVA. The proposed algorithm can save almost half of the

160
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iteration numbers to converge compared with original NG-IVA algorithm.

In Chapter 3, the specific block permutation problem is discussed by an-

alyzing the cost function. Then two kinds of solutions were proposed to solve

this problem. Firstly, a robust IVA algorithm was proposed to address this

problem by exploiting the phase continuity of the unmixing matrix to adjust

the misalignments and thereby keep the permutation consistent across all the

frequency bins. Then, an overlapped chain type dependency structure was

also proposed to mitigate this problem. The experimental results confirmed

that when the block permutation happened, the separation performance was

poor, the SDR and SIR were negative values or small positive values. When

the proposed methods were used, the block permutation problem was mit-

igate and a good separation performance can be achieved. Moreover, even

when there was no block permutation problem, the separation performance

can still be improved about 1.3dB and 3.0dB respectively by using the robust

IVA algorithm. When the chain type dependency structure was applied to

AuxIVA, the iteration numbers can be saved approximately 20% compared

with the original AuxIVA algorithm.

In Chapter 4, the informed IVA scheme was proposed, which introduced

the geometric information captured from video to combine with the FastIVA

algorithm. The geometric information was used to set a smart initialization

for optimization problem. The proposed scheme can not only make FastIVA

more robust in terms of avoiding the block permutation problem, but also

improve convergence speed and separation performance. The experimental

results indicated that the improvement in noisy and reverberant room en-

vironment were approximately 0.75dB and 1.4dB in terms of SDR and SIR

respectively compared with the original FastIVA algorithm. Moreover, a

pitch based objective evaluation method was also proposed for evaluating

the separation performance when using real room recordings.

In Chapter 5, a particular multivariate generalized Gaussian distribution
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was proposed to be the source prior for IVA. The nonlinear score function

derived from this particular source prior contained fourth order cross terms,

which introduced extra relationships between different frequency bins and

improved the dependency structure to achieve a better separation perfor-

mance. The proposed source prior was applied to NG-IVA, FastIVA and

AuxIVA, and experimental results confirmed the advantage of the proposed

source prior. When the new source prior was applied to the NG-IVA algo-

rithm, the SDR and SIR improvement were approximately 0.9dB and 0.8dB

respectively. When it was applied to the FastIVA algorithm, both the SDR

and SIR improvement were approximately 0.6dB. Finally, when AuxIVA

adopted the new source prior, the improvement was 1.7dB and 1.9dB in

terms of SDR and SIR respectively.

In Chapter 6, the dependency structure within the frequency domain

speech signals was researched, and the t copula was found to be suitable

to describe this dependency structure. Then, the multivariate student’s t

distribution is constructed by using a t copula with univariate student’s

t marginal distribution, and the NG-IVA with this multivariate student’s t

source prior was derived. The experimental results showed that the proposed

method can consistently achieve improved separation performance in differ-

ent reverberant room environments. The average improvement in terms of

SDR and SIR were 1.3dB and 1.1dB respectively compared with the original

NG-IVA algorithm.

7.2 Future Work

In order to further improve this study, there are several topics which could

be further researched.

Firstly, in order to improve IVA, other dependency structure needs to

be exploited. With a stronger dependency structure, the block permutation
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problem may be mitigated, which will make the separation performance of

IVA more robust. Moreover, an improved dependency structure will also

potentially help to improve the separation performance of IVA.

Secondly, the theoretical link between the dependency structure and the

separation performance is still missing. It will be helpful to exploit how the

dependency structure affects the separation performance. This knowledge

could be exploited in future algorithm design.

Thirdly, as for the multivariate student’s t source prior, the selection

of the degrees of freedom parameter should be studied. Although there

are several methods to estimate this parameter for a pure speech signal,

such as the tail index estimation method [88], it is difficult to estimate this

parameter by using only the mixtures. A potential solution for this problem

is to roughly separate the mixtures at the first stage, then estimate the

degrees of freedom for each source.

Fourthly, the combination of IVA algorithms and CASA based meth-

ods such as the time frequency masking technique can potentially further

improve the separation performance. Recently, several such combinations

have been proposed such as [9] [10]. Moreover, this combination scheme can

also be used to solve the underdetermined case by using the time frequency

representations to exploit the number of sources and the direction of arrival

information.

Finally, IVA still suffers from the challenging problem of a high rever-

berant room environment [89]. There are several dereverberation methods

that can be considered to combine with the IVA algorithm to mitigate this

problem. Beamforming is widely used for dereverberation in the field of

speech processing. Thus, using beamforming as a pre-processing stage to

dereverberate the speech signal seems to be a potential solution to deal with

this problem [90]. Linear prediction is another popular dereverberation tech-

nique. Many related methods have been published [91] [92] [93]. However,
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few of them have been used for the blind source separation field, because they

all focus on the situations that there is only one source in the measurements.

For the cocktail party problem, the number of sources is at least two, which

makes it is difficult to use the linear prediction method to dereverberate the

speech mixtures. As for the combination, the pre-processing will affect the

room impulse response and change the original speech mixtures, sometimes

it will make the speech mixtures are unsuitable for IVA algorithms at the

second stage. Thus, how to design a joint optimization algorithm to combine

the dereverberation stage with IVA to achieve a good performance in highly

reverberant environment is open to future study [94].
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