1,913 research outputs found

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study

    Get PDF
    Photovoltaic solar energy is booming due to the continuous improvement in photovoltaic panel efficiency along with a downward trend in production costs. In addition, the European Union is committed to easing the implementation of renewable energy in many companies in order to obtain funding to install their own panels. Nonetheless, the nature of solar energy is intermittent and uncontrollable. This leads us to an uncertain scenario which may cause instability in photovoltaic systems. This research addresses this problem by implementing intelligent models to predict the production of solar energy. Real data from a solar farm in Scotland was utilized in this study. Finally, the models were able to accurately predict the energy to be produced in the next hour using historical information as predictor variables.Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2020-112495RB-C21I + D + i FEDER B-TIC-42-UGR2

    Gaining Insight into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools

    Get PDF
    Over the last two decades, Artificial Intelligence (AI) approaches have been applied to various applications of the smart grid, such as demand response, predictive maintenance, and load forecasting. However, AI is still considered to be a ‘‘black-box’’ due to its lack of explainability and transparency, especially for something like solar photovoltaic (PV) forecasts that involves many parameters. Explainable Artificial Intelligence (XAI) has become an emerging research field in the smart grid domain since it addresses this gap and helps understand why the AI system made a forecast decision. This article presents several use cases of solar PV energy forecasting using XAI tools, such as LIME, SHAP, and ELI5, which can contribute to adopting XAI tools for smart grid applications. Understanding the inner workings of a prediction model based on AI can give insights into the application field. Such insight can provide improvements to the solar PV forecasting models and point out relevant parameters

    Increasing the resolution of solar and wind time series for energy system modeling: A review

    Get PDF
    This is an open access article under the CC BY licenseBottom-up energy system models are often based on hourly time steps due to limited computational tractability or data availability. However, in order to properly assess the rentability and reliability of energy systems by accounting for the intermittent nature of renewable energy sources, a higher level of detail is necessary. This study reviews different methods for increasing the temporal resolutions of time series data for global horizontal and direct normal irradiance for solar energy, and wind speed for wind energy. The review shows that stochastic methods utilizing random sampling and non-dimensional approaches are the most frequently employed for solar irradiance data downscaling. The non-dimensional approach is particularly simple, with global applicability and a robust methodology with good validation scores. The temporal increment of wind speed, however, is challenging due to its spatiotemporal complexity and variance, especially for accurate wind distribution profiles. Recently, researchers have mostly considered methods that draw on the combination of meteorological reanalysis and stochastic fluctuations, which are more accurate than the simple and conventional interpolation methods. This review provides a road map of how to approach solar and wind speed temporal downscaling methods and quantify their effectiveness. Furthermore, potential future research areas in solar and wind data downscaling are also highlighted
    • …
    corecore