7 research outputs found

    Best Management Practices for Corn Production in South Dakota: Irrigation and Salt Management

    Get PDF
    In South Dakota, average annual precipitation ranges from less than 13 inches to nearly 30 inches, generally increasing from west to east (fig. 6.1). However, all regions of South Dakota can experience drought. Irrigation can reduce a crop’s dependence on natural rainfall and improve yields. To best capitalize on investment in irrigation equipment, it has been suggested that one should increase plant populations on irrigated land by 2,000 to 3,000 plants per acre (Aldrich et al. 1975). This chapter discusses how much irrigation water to apply and how to manage the salts contained in the water. If you are planning a new system or expanding an existing system, equipment and management options should be discussed with your local irrigation equipment dealer or Extension educator. A permit may be required to irrigate in South Dakota. For permit requirements, contact the South Dakota Department of Environment and Natural Resources (DENR)

    Understanding urban ecology : exploring the ecological integrity of small scale greening interventions in the City of Cape Town

    Get PDF
    This research explores the ecological integrity of three small-scale interventions in urban greening in a single catchment in the City of Cape Town, within the Cape Flats Sand Fynbos ecotype. The chosen intervention sites were namely: Tokai Park, Princess Vlei and Bottom Road Sanctuary. The study aimed to bridge a gap in the current research by contributing to an understanding of the ecological value of social management and intervention

    Quantification of soil CO2 emissions under the influence of climate change on the Qinghai-Tibet Plateau based on freely accessible data

    Get PDF
    Soil CO2 emissions are of important significance for the global carbon cycle and, thus, for climate change. Soils function as main source of atmospheric CO2 from terrestrial ecosystems. Even small changes in soil CO2 emissions can accelerate global warming. Reciprocally, climate change influences soil CO2 emissions. Against this background, it is highly essential to quantify potential soil CO2 emissions in order to be able to project future developments of global warming. In this context, the permafrost region of the Qinghai-Tibet Plateau is a key region for soil CO2 emissions. Permafrost soils are considered as a CO2 source with high potential. In consequence of thawing processes, large quantities of carbon stored in these soils become subject to microbial decomposition and are emitted as CO2. Because of its large area (1.050 × 106 km2) and high sensitivity to climate together with increasing permafrost degradation, the Qinghai-Tibet Plateau attains global significance. Empirical models still represent the commonly used type of model, being highly advantageous especially for large and remote areas with a high data scarcity as e.g. the Qinghai-Tibetan Plateau. Due to the large area difficult to access, field measurements are very costly and time consuming. Thus, they are strongly limited on the Qinghai-Tibetan Plateau. Consequently, area-explicit data sets mainly exhibit a low spatial resolution, are not comprehensive or freely accessible. However, freely available global datasets of a high resolution (~1 km) enable an application of empirical models to predict soil CO2 emissions on the Qinghai-Tibet Plateau area explicitly. This thesis provides an approach to quantify CO2 emissions from permafrost soils efficiently. Belowground biomass on the Qinghai-Tibet Plateau was calculated using empirical models since it represents a not yet area-explicitly quantified key input factor in empirical models for soil CO2 emissions on the Qinghai-Tibet Plateau. Based on a comparison of different regression models for quantifying current soil CO2 emissions on the Qinghai-Tibet Plateau, the one closest representing field measurements throughout various vegetation zones was identified. Applying this model, which incorporates mean annual precipitation as input factor, future soil CO2 emissions were predicted. Consequently, scenarios of climate change for mean annual precipitation underlie the predictions of potential soil CO2 emissions for 2050 and 2070. To account for the high importance of permafrost in the study area, thawing-induced CO2 emissions from those soils were calculated additionally using experimental data on carbon losses from permafrost soils that were taken from the literature. To quantify those CO2 emissions, area-explicit carbon stocks were calculated for the Qinghai-Tibet Plateau. This thesis highlights the quantitative dimension of CO2 from permafrost soils on the Qinghai-Tibet Plateau for global warming, with 0.15 Pg C year-1 fitting the order of magnitude of results of comparable studies. The thesis further demonstrates the impact of climate change especially on thawing-induced CO2 emissions from permafrost soils. Their order of magnitude, approximately 4% of the annual average atmospheric increase of CO2-C, justifies strategies for climate protection in particular. By comparing the modeled results to data from field measurements, this thesis further indicates that empirical models represent suitable tools to adequately model and predict belowground biomass and soil CO2 emissions. Using exclusively freely accessible data sets, this thesis further exemplifies a highly efficient quantification of complex phenomena on a regional scale at a high resolution. Data-scarce areas of global relevance potentially profit most

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    Studies of Ecology and Morphology in the plethodontid salamander genus Batrachoseps

    Get PDF
    Studies of Ecology and Morphology in the plethodontid salamander genus BatrachosepsbyChristopher James EvelynEvolution of interspecific morphological diversity within a clade is one of the fundamental patterns studied in evolutionary biology. These morphological differences may reflect adaptation to different environmental conditions and influence patterns across biogeographical spatial scales and macroevolutionary time scales. Using a multivariate measure of morphological shape and a well-studied phylogenetic hypothesis for the plethodontid salamander genus Batrachoseps, I revealed the strong correlation between morphology and species range size, and tested ecological hypotheses that might explain this relationship. Morphological evolution in Batrachoseps can be generally described as variation on the theme of elongation, a pattern also seen in several families of lizards such as Scincidae and Gymnophthalmidae. In Batrachoseps the most elongate forms appear wormlike with highly reduced limbs. Generalized forms of Batrachoseps are similar in proportion to other small salamanders in the family Plethodontidae, such as Plethodon. To investigate whether morphological differences reflect a difference in habitat use, a pair of closely related species were studied where their ranges overlap (Chapter 1). Broad partitioning of habitat was the rule with the wormlike B. nigriventris occupying low to middle elevation sites (600-1200 meters) and the more generalized B. stebbinsi occupying middle to high elevation sites (1100-1800 meters). These species showed considerable overlap in their use of microhabitat in terms of temperature, moisture, and cover objects. Despite their ecological similarity B. nigriventris has a much larger species range (34,000 km2) than B. stebbinsi (1,300 km2). This is consistent with the strong correlation between evolution of species range size and evolution of elongation in Batrachoseps (Chapter 2). Species range size in wormlike species is an order of magnitude larger than more generalized forms. Overall the evolution of elongation in Batrachoseps is a strong and significant predictor of the evolution of large range size. This pattern is not achieved by wormlike forms evolving to occupy wider elevational ranges or more abundant low elevation habitat. Large range size is an important metric for predicting the probability of species extinction. Finding traits that predict extinction is of central interest to the study of conservation biology and macroevolution. A previously proposed hypothesis posited that evolution of wormlike morphology in Batrachoseps is a response to dry, seasonal, and unpredictable precipitation patterns. Individuals with small diameters could more easily retreat to subsurface refugia when surface conditions are inhospitable. These small salamanders depend upon seasonal precipitation events for surface activity to carry out basic life history activities. When surface conditions are moist Batrachoseps feed, breed, and re-hydrate after long periods of inactivity below the surface. I found a strong correlation between evolution of wormlike morphology and evolution to persist in more seasonal habitats (Chapter 3). Dry season precipitation and precipitation seasonality were significantly correlated with morphological evolution in Batrachoseps. This result suggests that wormlike morphology is advantageous in habitats where food resources and mating opportunities are only available periodically. All Batrachoseps appear to occupy similar microhabitat but persistence in highly seasonal habitats with low levels of dry season precipitation is associated with evolution of elongate morphology

    Best Management Practices for Corn Production in South Dakota

    Get PDF
    Table of Contents: Introduction [Page] 1 1. Corn Growth and Development [Page] 3 2. Corn Hybrid Selection [Page] 9 3. Corn Planting Guide [Page] 13 4. Seasonal Hazards—Frost, Hail, Drought, and Flooding [Page] 17 5. Tillage, Crop Rotations, and Cover Crops [Page] 21 6. Irrigation and Salt Management [Page] 31 7. Soil Fertility [Page] 39 8. Corn Insect Pests [Page] 49 9. Corn Diseases in South Dakota [Page] 59 10. Weeds and Herbicide Injury in Corn [Page] 71 11. Corn Grain Harvest [Page] 93 12. Corn Drying and Storage [Page] 99 13. Recordkeeping [Page] 107 14. Useful Calculations: Corn Yields and Storage Requirements [Page] 111 15. Corn Calendar and Troubleshooting Guide [Page] 121 16. Websites with Related Information [Page] 12
    corecore