988 research outputs found

    Cognitive Software Defined Networking and Network Function Virtualization and Applications

    Get PDF
    The emergence of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) has revolutionized the Internet. Using SDN, network devices can be controlled from a centralized, programmable control plane that is decoupled from their data plane, whereas with NFV, network functions (such as network address translation, firewall, and intrusion detection) can be virtualized instead of being implemented on proprietary hardware. In addition, Artificial Intelligence (AI) and Machine Learning (ML) techniques will be key to automating network operations and enhancing customer service. Many of the challenges behind SDN and NFV are currently being investigated in several projects all over the world using AI and ML techniques, such as AI- and software-based networking, autonomic networking, and policy-based network management. Contributions to this Special Issue come from the above areas of research. Following a rigorous review process, four excellent articles were accepted that address and go beyond many of the challenges mentioned above

    Latency-Sensitive Web Service Workflows: A Case for a Software-Defined Internet

    Full text link
    The Internet, at large, remains under the control of service providers and autonomous systems. The Internet of Things (IoT) and edge computing provide an increasing demand and potential for more user control for their web service workflows. Network Softwarization revolutionizes the network landscape in various stages, from building, incrementally deploying, and maintaining the environment. Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) are two core tenets of network softwarization. SDN offers a logically centralized control plane by abstracting away the control of the network devices in the data plane. NFV virtualizes dedicated hardware middleboxes and deploys them on top of servers and data centers as network functions. Thus, network softwarization enables efficient management of the system by enhancing its control and improving the reusability of the network services. In this work, we propose our vision for a Software-Defined Internet (SDI) for latency-sensitive web service workflows. SDI extends network softwarization to the Internet-scale, to enable a latency-aware user workflow execution on the Internet.Comment: Accepted for Publication at The Seventh International Conference on Software Defined Systems (SDS-2020

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Enhancing satellite & terrestrial networks integration through NFV/SDN technologies

    Get PDF
    NFV and SDN technologies can become key facilitators for the combination of terrestrial and satellite networks. Enabling NFV into the SatCom domain will provide operators with appropriate tools and interfaces in order to establish end-to-end fully operable virtualized satellite networks to be offered to third-party operators/service providers. Enabling SDNbased, federated resource management paves way for a unified control plane that would allow operators to efficiently manage and optimize the operation of the hybrid network. The proposed solution is expected to bring improved coverage, optimized communication resources use and better network resilience, along with improved innovation capacity and business agility for deploying communications services over combined networks.Postprint (author's final draft

    On the virtualization and dynamic orchestration of satellite communication services

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes a solution for the virtualization and dynamic orchestration of satellite communication services that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies within the satellite ground segment systems. Along with the description of the main system architecture traits, the flowchart of a general procedure for the dynamic instantiation of virtualized satellite networks on top of a SDN/NFV-enabled satellite ground segment system is provided. The paper also presents experimental results for the dynamic customization of satellite network services through the implementation of a set of virtualized satellite network functions that can be orchestrated over general purpose open virtual platforms.Peer ReviewedPostprint (author's final draft

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore