138,669 research outputs found

    OPEN SOURCE WEB TOOL FOR TRACKING IN A LOWCOST MOBILE MAPPING SYSTEM

    Get PDF
    During the last decade several Mobile Mapping Systems (MMSs), i.e. systems able to acquire efficiently three dimensional data using moving sensors (Guarnieri et al., 2008, Schwarz and El-Sheimy, 2004), have been developed. Research and commercial products have been implemented on terrestrial, aerial and marine platforms, and even on human-carried equipment, e.g. backpack (Lo et al., 2015, Nex and Remondino, 2014, Ellum and El-Sheimy, 2002, Leica Pegasus backpack, 2016, Masiero et al., 2017, Fissore et al., 2018).<br><br> Such systems are composed of an integrated array of time-synchronised navigation sensors and imaging sensors mounted on a mobile platform (Puente et al., 2013, Tao and Li, 2007). Usually the MMS implies integration of different types of sensors, such as GNSS, IMU, video camera and/or laser scanners that allow accurate and quick mapping (Li, 1997, Petrie, 2010, Tao, 2000). The typical requirement of high-accuracy 3D georeferenced reconstruction often makes such systems quite expensive. Indeed, at time of writing most of the terrestrial MMSs on the market have a cost usually greater than 50000, which might be expensive for certain applications (Ellum and El-Sheimy, 2002, Piras et al., 2008). In order to allow best performance sensors have to be properly calibrated (Dong et al., 2007, Ellum and El-Sheimy, 2002).<br><br> Sensors in MMSs are usually integrated and managed through a dedicated software, which is developed ad hoc for the devices mounted on the mobile platform and hence tailored for the specific used sensors. Despite the fact that commercial solutions are complete, very specific and particularly related to the typology of survey, their price is a factor that restricts the number of users and the possible interested sectors.<br><br> This paper describes a (relatively low cost) terrestrial Mobile Mapping System developed at the University of Padua (TESAF, Department of Land Environment Agriculture and Forestry) by the research team in CIRGEO, in order to test an alternative solution to other more expensive MMSs. The first objective of this paper is to report on the development of a prototype of MMS for the collection of geospatial data based on the assembly of low cost sensors managed through a web interface developed using open source libraries. The main goal is to provide a system accessible by any type of user, and flexible to any type of upgrade or introduction of new models of sensors or versions thereof. After a presentation of the hardware components used in our system, a more detailed description of the software developed for the management of the MMS will be provided, which is the part of the innovation of the project. According to the worldwide request for having big data available through the web from everywhere in the world (Pirotti et al., 2011), the proposed solution allows to retrieve data from a web interface Figure 4. Actually, this is part of a project for the development of a new web infrastructure in the University of Padua (but it will be available for external users as well), in order to ease collaboration between researchers from different areas.<br><br> Finally, strengths, weaknesses and future developments of the low cost MMS are discussed

    A Handbook Supporting Model-Driven Software Development - a Case Study

    Get PDF

    On an application of extended kalman filtering to activated sludge processes: a benchmark study

    Get PDF
    The growing demand for performance improvements of urban wastewater system operation coupled with the lack of instrumentation in most wastewater treatment plants motivates the need for non-linear observers to be used as virtual sensors for estimation and control of effluent quality. This paper is focused on the development of a general procedure for on-line monitoring of activated sludge processes, using an extended Kalman filter (EKF) approach. The Activated Sludge Model no.1 (ASM1) is selected to describe the biological processes in the reactor. On-line measurements are corrupted by additive white noise and unknown inputs are modelled using fast Fourier transform (FFT) and spectrum analyses. The given procedure aims at reducing the original ASM1 model to an observable and identifiable model, which can be used for joint non-linear state and parameter estimations. Simulation results are presented to demonstrate the effectiveness of the proposed methods and show that on-line monitoring of SND and XND concentrations is achieved when dynamic input data are used tocharacterize the influent wastewater for the model

    A role-based software architecture to support mobile service computing in IoT scenarios

    Get PDF
    The interaction among components of an IoT-based system usually requires using low latency or real time for message delivery, depending on the application needs and the quality of the communication links among the components. Moreover, in some cases, this interaction should consider the use of communication links with poor or uncertain Quality of Service (QoS). Research efforts in communication support for IoT scenarios have overlooked the challenge of providing real-time interaction support in unstable links, making these systems use dedicated networks that are expensive and usually limited in terms of physical coverage and robustness. This paper presents an alternative to address such a communication challenge, through the use of a model that allows soft real-time interaction among components of an IoT-based system. The behavior of the proposed model was validated using state machine theory, opening an opportunity to explore a whole new branch of smart distributed solutions and to extend the state-of-the-art and the-state-of-the-practice in this particular IoT study scenario.Peer ReviewedPostprint (published version

    Optimization Based Self-localization for IoT Wireless Sensor Networks

    Get PDF
    In this paper we propose an embedded optimization framework for the simultaneous self-localization of all sensors in wireless sensor networks making use of range measurements from ultra-wideband (UWB) signals. Low-power UWB radios, which provide time-of-arrival measurements with decimeter accuracy over large distances, have been increasingly envisioned for realtime localization of IoT devices in GPS-denied environments and large sensor networks. In this work, we therefore explore different non-linear least-squares optimization problems to formulate the localization task based on UWB range measurements. We solve the resulting optimization problems directly using non-linear-programming algorithms that guarantee convergence to locally optimal solutions. This optimization framework allows the consistent comparison of different optimization methods for sensor localization. We propose and demonstrate the best optimization approach for the self-localization of sensors equipped with off-the-shelf microcontrollers using state-of-the-art code generation techniques for the plug-and-play deployment of the optimal localization algorithm. Numerical results indicate that the proposed approach improves localization accuracy and decreases computation times relative to existing iterative methods

    Real-time and fault tolerance in distributed control software

    Get PDF
    Closed loop control systems typically contain multitude of spatially distributed sensors and actuators operated simultaneously. So those systems are parallel and distributed in their essence. But mapping this parallelism onto the given distributed hardware architecture, brings in some additional requirements: safe multithreading, optimal process allocation, real-time scheduling of bus and network resources. Nowadays, fault tolerance methods and fast even online reconfiguration are becoming increasingly important. All those often conflicting requirements, make design and implementation of real-time distributed control systems an extremely difficult task, that requires substantial knowledge in several areas of control and computer science. Although many design methods have been proposed so far, none of them had succeeded to cover all important aspects of the problem at hand. [1] Continuous increase of production in embedded market, makes a simple and natural design methodology for real-time systems needed more then ever

    Using tracked mobile sensors to make maps of environmental effects

    Get PDF
    We present a study the results of a study of environmental carbon monoxide pollution that has uses a set of tracked, mobile pollution sensors. The motivating concept is that we will be able to map pollution and other properties of the real world a fine scale if we can deploy a large set of sensors with members of the general public who would carry them as they go about their normal everyday activities. To prove the viability of this concept we have to demonstrate that data gathered in an ad-hoc manner is reliable enough in order to allow us to build interesting geo-temporal maps. We present a trial using a small number of global positioning system-tracked CO sensors. From analysis of raw GPS logs we find some well-known spatial and temporal properties of CO. Further, by processing the GPS logs we can find fine-grained variations in pollution readings such as when crossing roads. We then discuss the space of possibilities that may be enabled by tracking sensors around the urban environment – both in getting at personal experience of properties of the environment and in making summative maps to predict future conditions. Although we present a study of CO, the techniques will be applicable to other environmental properties such as radio signal strength, noise, weather and so on
    • …
    corecore