215,322 research outputs found

    Software search is not a science, even among scientists: A survey of how scientists and engineers find software

    Get PDF
    Improved software discovery is a prerequisite for greater software reuse: after all, if someone cannot find software for a particular task, they cannot reuse it. Understanding people’s approaches and preferences when they look for software could help improve facilities for software discovery. We surveyed people working in several scientific and engineering fields to better understand their approaches and selection criteria. We found that even among highly-trained people, the rudimentary approaches of relying on general Web searches, the opinions of colleagues, and the literature were still the most commonly used. However, those who were involved in software development differed from nondevelopers in their use of social help sites, software project repositories, software catalogs, and organization-specific mailing lists or forums. For example, software developers in our sample were more likely to search in community sites such as Stack Overflow even when seeking ready-to-run software rather than source code, and likewise, asking colleagues was significantly more important when looking for ready-to-run software. Our survey also provides insight into the criteria that matter most to people when they are searching for ready-to-run software. Finally, our survey also identifies some factors that can prevent people from finding software

    Software search is not a science, even among scientists: A survey of how scientists and engineers find software

    Get PDF
    Improved software discovery is a prerequisite for greater software reuse: after all, if someone cannot find software for a particular task, they cannot reuse it. Understanding people’s approaches and preferences when they look for software could help improve facilities for software discovery. We surveyed people working in several scientific and engineering fields to better understand their approaches and selection criteria. We found that even among highly-trained people, the rudimentary approaches of relying on general Web searches, the opinions of colleagues, and the literature were still the most commonly used. However, those who were involved in software development differed from nondevelopers in their use of social help sites, software project repositories, software catalogs, and organization-specific mailing lists or forums. For example, software developers in our sample were more likely to search in community sites such as Stack Overflow even when seeking ready-to-run software rather than source code, and likewise, asking colleagues was significantly more important when looking for ready-to-run software. Our survey also provides insight into the criteria that matter most to people when they are searching for ready-to-run software. Finally, our survey also identifies some factors that can prevent people from finding software

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    The CHAIN-REDS Semantic Search Engine

    Get PDF
    e-Infrastructures, and in particular Data Repositories and Open Access Data Infrastructures, are essential platforms for e-Science and e-Research and are being built since several years both in Europe and the rest of the world to support diverse multi/inter-disciplinary Virtual Research Communities. So far, however, it is difficult for scientists to correlate papers to datasets used to produce them and to discover data and documents in an easy way. In this paper, the CHAINREDS project’s Knowledge Base and its Semantic Search Engine are presented, which attempt to address those drawbacks and contribute to the reproducibility of science

    Origins of Modern Data Analysis Linked to the Beginnings and Early Development of Computer Science and Information Engineering

    Get PDF
    The history of data analysis that is addressed here is underpinned by two themes, -- those of tabular data analysis, and the analysis of collected heterogeneous data. "Exploratory data analysis" is taken as the heuristic approach that begins with data and information and seeks underlying explanation for what is observed or measured. I also cover some of the evolving context of research and applications, including scholarly publishing, technology transfer and the economic relationship of the university to society.Comment: 26 page
    • …
    corecore