3,685 research outputs found

    System and Software Requirements in Relation to Observability and Explainability

    Get PDF
    Software maintenance and evolution are crucial aspects of software development. In today's world, observability and explainability are becoming essential requirements for software systems. This research paper investigates the relationship between software maintenance and evolution with observability and explainability. The paper explores the importance of observability and explainability in software systems and how they impact the maintenance and evolution of software systems. The research paper presents various techniques and tools for achieving observability and explainability in software systems. The paper also highlights the challenges and future research directions in the field of software maintenance and evolution in relation to observability and explainability

    Guest Editorial: Special Issue on Software, Maintenance and Evolution

    Get PDF
    Software maintenance and evolution continues to play a vital role in the development of software systems. It is widely acknowledged that the majority of development effort, and thereby expenditure, is allocated to postinitial release activity. This activity, which takes place after the software has seen its first release, is known as software maintenance (or software evolution)

    Clone Removal in Java Programs as a Process of Stepwise Unification

    Full text link
    Cloned code is one of the most important obstacles against consistent software maintenance and evolution. Although today's clone detection tools find a variety of clones, they do not offer any advice how to remove such clones. We explain the problems involved in finding a sequence of changes for clone removal and suggest to view this problem as a process of stepwise unification of the clone instances. Consequently the problem can be solved by backtracking over the possible unification steps

    Analyzing repetitiveness in big code to support software maintenance and evolution

    Get PDF
    Software systems inevitably contain a large amount of repeated artifacts at different level of abstraction---from ideas, requirements, designs, algorithms to implementation. This dissertation focuses on analyzing software repetitiveness at implementation code level and leveraging the derived knowledge for easing tasks in software maintenance and evolution such as program comprehension, API use, change understanding, API adaptation and bug fixing. The guiding philosophy of this work is that, in a large corpus, code that conforms to specifications appears more frequently than code that does not, and similar code is changed similarly and similar code could have similar bugs that can be fixed similarly. We have developed different representations for software artifacts at source code level, and the corresponding algorithms for measuring code similarity and mining repeated code. Our mining techniques bases on the key insight that code that conforms to programming patterns and specifications appears more frequently than code that does not. Thus, correct patterns and specifications can be mined from large code corpus. We also have built program differencing techniques for analyzing changes in software evolution. Our key insight is that similar code is likely changed in similar ways and similar code likely has similar bug(s) which can be fixed similarly. Therefore, learning changes and fixes from the past can help automatically detect and suggest changes/fixes to the repeated code in software development. Our empirical evaluation shows that our techniques can accurately and efficiently detect repeated code, mine useful programming patterns and API specifications, and recommend changes. It can also detect bugs and suggest fixes, and provide actionable insights to ease maintenance tasks. Specifically, our code clone detection tool detects more meaningful clones than other tools. Our mining tools recover high quality programming patterns and API preconditions. The mined results have been used to successfully detect many bugs violating patterns and specifications in mature open-source systems. The mined API preconditions are shown to help API specification writer identify missing preconditions in already-specified APIs and start building preconditions for the not-yet-specified ones. The tools are scalable which analyze large systems in reasonable times. Our study on repeated changes give useful insights for program auto-repair tools. Our automated change suggestion approach achieves top-1 accuracy of 45%-51% which relatively improves more than 200% over the base approach. For a special type of change suggestion, API adaptation, our tool is highly correct and useful

    ConSIT: A conditioned program slicer

    Get PDF
    Conditioned slicing is a powerful generalisation of static and dynamic slicing which has applications to many problems in software maintenance and evolution, including reuse, reengineering and program comprehension. However there has been relatively little work on the implementation of conditioned slicing. Algorithms for implementing conditioned slicing necessarily involve reasoning about the values of program predicates in certain sets of states derived from the conditioned slicing criterion, making implementation particularly demanding. The paper introduces ConSIT, a conditioned slicing system which is based upon conventional static slicing, symbolic execution and theorem proving. ConSIT is the first fully automated implementation of conditioned slicing. An implementation of ConSIT is available for experimentation at &http://www.mcs.gold.ac.uk/tilde/~mas01sd/consit.htm

    Identifying Compiler and Optimization Options from Binary Code using Deep Learning Approaches

    Full text link
    D. Pizzolotto and K. Inoue, "Identifying Compiler and Optimization Options from Binary Code using Deep Learning Approaches," 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 2020, pp. 232-242, doi: 10.1109/ICSME46990.2020.00031

    An agent-oriented approach to change propagation in software evolution

    Get PDF
    Software maintenance and evolution are inevitable activities since almost all software that is useful and successful stimulates user-generated requests for change and improvements. One of the most critical problems in software maintenance and evolution is to maintain consistency between software artefacts by propagating changes correctly. Although many approaches have been proposed, automated change propagation is still a significant technical challenge in software engineering. In this paper we present a novel, agent-oriented approach to deal with change propagation in evolving software systems that are developed using the Prometheus methodology. A metamodel with a set of the Object Constraint Language (OCL) rules forms the basis of the proposed framework. The underlying change propagation mechanism of our framework is based on the well-known Belief-Desire-Intention (BDI) agent architecture. Traceability information and design heuristics are also incorporated into the framework to facilitate the change propagation process

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices
    • …
    corecore