154 research outputs found

    Towards Data-driven Software-defined Infrastructures

    Get PDF
    Abstract The abundance of computing technologies and devices imply that we will live in a data-driven society in the next years. But this data-driven society requires radically new technologies in the data center to deal with data manipulation, transformation, access control, sharing and placement, among others. We advocate in this paper for a new generation of Software Defined Data Management Infrastructures covering the entire life- cycle of data. On the one hand, this will require new extensible programming abstractions and services for data-management in the data center. On the other hand, this also implies opening up the control plane to data owners outside the data center to manage the data life cycle. We present in this article the open challenges existing in data-driven software defined infrastructures and a use case based on Software Defined Protection of data

    Decentralized workflow management on software defined infrastructures

    Get PDF

    Analysis of Application Delivery Platform for Software Defined Infrastructures

    Get PDF
    Application Service Providers (ASPs) obtaining resources from multiple clouds have to contend with different management and control platforms employed by the cloud service providers (CSPs) and network service providers (NSP). Distributing applications on multiple clouds has a number of benefits but the absence of a common multi-cloud management platform that would allow ASPs dynamic and real-time control over resources across multiple clouds and interconnecting networks makes this task arduous. OpenADN, being developed at Washington University in Saint Louis, fills this gap. However, performance issues of such a complex, distributed and multi-threaded platform, not tackled appropriately, may neutralize some of the gains accruable to the ASPs. In this paper, we establish the need for and methods of collecting precise and fine-grained behavioral data of OpenADN like platforms that can be used to optimize their behavior in order to control operational cost, performance (e.g., latency) and energy consumption.Comment: E-preprin

    A flexible information service for management of virtualized software-defined infrastructures

    Get PDF
    Summary There is a major shift in the Internet towards using programmable and virtualized network devices, offering significant flexibility and adaptability. New networking paradigms such as software-defined networking and network function virtualization bring networks and IT domains closer together using appropriate architectural abstractions. In this context, new and novel information management features need to be introduced. The deployed management and control entities in these environments should have a clear, and often global, view of the network environment and should exchange information in alternative ways (e.g. some may have real-time constraints, while others may be throughput sensitive). Our work addresses these two network management features. In this paper, we define the research challenges in information management for virtualized highly dynamic environments. Along these lines, we introduce and present the design details of the virtual infrastructure information service, a new management information handling framework that (i) provides logically centralized information flow establishment, optimization, coordination, synchronization and management with respect to the diverse management and control entity demands; (ii) is designed according to the characteristics and requirements of software-defined networking and network function virtualization; and (iii) inter-operates with our own virtualized infrastructure framework. Evaluation results demonstrating the flexible and adaptable behaviour of the virtual infrastructure information service and its main operations are included in the paper. Copyright © 2016 John Wiley & Sons, Ltd

    Tackling user-centric media demands through adaptable software defined infrastructures

    No full text
    This paper proposes a conceptual approach to content delivery that addresses emerging media demand trends through cross-layer integration between Virtualised Service Networks (VSNs) and Information Centric Networking (ICN). The transformative effects of software-defined infrastructures are presented and how these technologies can support dynamics needed to deliver personalised, interactive, mobile, and localised media content to consumer

    5GEx: realising a Europe-wide multi-domain framework for software-defined infrastructures

    Get PDF
    Market fragmentation has resulted in a multitude of network and cloud/data center operators, each focused on different countries, regions and technologies. This makes it difficult and costly to create infrastructure services spanning multiple domains, such as virtual connectivity or compute resources. In this article, we discuss the goals and work being done within the 5GEx (5G Exchange) project in realising a Europe-wide multi-domain platform. This platform aims at enabling cross-domain orchestration of services over multiple administrations or over multi-domain single administrations in the context of emerging 5G networking. The 5GEx vision is based on introducing a unification via network function virtualisation/software-defined networking compatible multi-domain orchestration for networks, clouds and services. We describe the motivation and 5GEx vision, the adopted architecture and the next steps in terms of implementation and experimentation.This work is performed in the framework of the H2020-ICT-2014 project 5GEx (Grant Agreement no. 671636), which is partially funded by the European Commission

    Editorial for FGCS Special issue on “Time-critical Applications on Software-defined Infrastructures”

    Get PDF
    Performance requirements in many applications can often be modelled as constraints related to time, for example, the span of data processing for disaster early warning [1], latency in live event broadcasting [2], and jitter during audio/video conferences [3]. These time constraints are often treated either in an “as fast as possible” manner, such as sensitive latencies in high-performance computing or communication tasks, or in a “timeliness” way where tasks have to be finished within a given window in real-time systems, as classified in [4]. To meet the required time constraints, one has to carefully analyse time constraints, engineer and integrate system components, and optimise the scheduling for computing and communication tasks. The development of a time-critical application is thus time-consuming and costly. During the past decades, the infrastructure technologies of computing, storage and networking have made tremendous progress. Besides the capacity and performance of physical devices, the virtualisation technologies offer effective resource management and isolation at different levels, such as Java Virtual Machines at the application level, Dockers at the operating system level, and Virtual Machines at the whole system level. Moreover, the network embedding [5] and software-defined networking [6] provide network-level virtualisation and control that enable a new paradigm of infrastructure, where infrastructure resources can be virtualised, isolated, and dynamically customised based on application needs. The software-defined infrastructures, including Cloud, Fog, Edge, software-defined networking and network function virtualisation, emerge nowadays as new environments for distributed applications with time-critical application requirements, but also face challenges in effectively utilising the advanced infrastructure features in system engineering and dynamic control. This special issue on “time-critical applications and software-defined infrastructures” focuses on practical aspects of the design, development, customisation and performance-oriented operation of such applications for Clouds and other distributed environments

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation
    • …
    corecore