6 research outputs found

    A Software Engineering Schema for Data Intensive Applications

    Get PDF
    The features developed by a software engineer (system specification) for a software system may significantly differ from the features required by a user (user requirements) for their envisioned system. These discrepancies are generally resulted from the complexity of the system, the vagueness of the user requirements, or the lack of knowledge and experience of the software engineer. The principles of software engineering and the recommendations of the ACM's Software Engineering Education Knowledge (SEEK) document can provide solutions to minimize these discrepancies; in turn, improve the quality of a software system and increase user satisfaction. In this paper, a software development framework, called SETh, is presented. The SETh framework consists of a set of visual models that support software engineering education and practices in a systematic manner. It also enables backward tracking/tracing and forward tracking/tracing capabilities - two important concepts that can facilitate the greenfield and evolutionary type software engineering projects. The SETh framework connects every step of the development of a software system tightly; hence, the learners and the experienced software engineers can study, understand, and build efficient software systems for emerging data science applications

    Strategies for the Development of IT Disaster Recovery Plans in the Manufacturing Industry

    Get PDF
    Information technology (IT) leaders have reported technology disruptions because of natural disasters, terror attacks, or adversarial threats. Information technology leaders are concerned with technology disruptions, as these disruptions are costing organizations as much as $22,000 per minute. Grounded in Zachman’s framework, the purpose of this qualitative multiple case study was to explore strategies IT managers in the manufacturing industry use to develop IT disaster recovery (DR) plans to support business operations. The participants included 3 manufacturing IT professionals, 2 Department of Defense manufacturing infrastructure specialists, and 1outsourcing contractor, each from firms located in the central United States who successfully developed IT DR plans to support business operations. Data collection comprised of interviews and documentation. I used Braun and Clarke’s (2006) six-step process for thematic analysis to identify 5 themes: contingency planning by priority, testing plans, levels of recovery, time requirements for recovery, and costs associations. The implications for positive social change include the potential for IT managers and leaders to contribute to strategic development of IT DR plans and prevent economic disruption for consumers, communities, and society during disaster events

    Student Expectations: The effect of student background and experience

    Get PDF
    CONTEXT The perspectives and previous experiences that students bring to their programs of study can affect their approaches to study and the depth of learning that they achieve Prosser & Trigwell, 1999; Ramsden, 2003). Graduate outcomes assume the attainment of welldeveloped independent learning skills which can be transferred to the work-place. PURPOSE This 5-year longitudinal study investigates factors influencing students’ approaches to learning in the fields of Engineering, Software Engineering, and Computer Science, at two higher education institutes delivering programs of various levels in Australia and New Zealand. The study aims to track the development of student approaches to learning as they progress through their program. Through increased understanding of students’ approaches, faculty will be better able to design teaching and learning strategies to meet the needs of an increasingly diverse student body. This paper reports on the first stage of the project. APPROACH In August 2017, we ran a pilot of our survey using the Revised Study Process Questionnaire(Biggs, Kember, & Leung, 2001) and including some additional questions related to student demographics and motivation for undertaking their current program of study. Data were analysed to evaluate the usefulness of data collected and to understand the demographics of the student cohort. Over the period of the research, data will be collected using the questionnaire and through focus groups and interviews. RESULTS Participants provided a representative sample, and the data collected was reasonable, allowing the questionnaire design to be confirmed. CONCLUSIONS At this preliminary stage, the study has provided insight into the student demographics at both institutes and identified aspects of students’ modes of engagement with learning. Some areas for improvement of the questionnaire have been identified, which will be implemented for the main body of the study

    A new strategy for active learning to maximise performance in intensive courses

    Get PDF
    This paper describes an innovation in the delivery of an introductory thermodynamics course offered to students studying towards an engineering qualification. The course was delivered in intensive format, across three weeks of study. Students find it challenging to engage with complex engineering topics in a short period of time, and there is no sizeable study break for pre-exam study. This means that students cannot afford to delay in learning and applying content. Every class must be an opportunity to interact with the content immediately. The innovation described here involved implementing a new daily structure for the course that attempted to mimic the standard process by which students learn material, apply it, study it and practice it in across a traditional-length semester. The new structure involved integrating the lecture and recitation components to the course to increasing the active learning during material delivery, then allowing students to engage in guided study and open-book formative assessment. This paper describes the implementation of this innovation. A brief review of the literature on intensive courses is provided, followed by a description of the approach used in this particular class. The results are then presented, and evaluated in the context of the research and the instructor’s own critical reflection

    Chair a session/Integration of theory and practice in the learning and teaching process

    Get PDF
    The theme for AAEE-2017 is “Integrated Engineering”, which covers a range of sub-themes, such as: Integration of theory and practice in the learning and teaching process Interdisciplinary and cross-disciplinary engineering programs and learning environments Integration of teaching and research in the engineering training process The role and impact of engineering students and educators in the wider community Systems perspectives on engineering education. Integration is also about connections, e.g. between students and teachers, between students in learning together, and between educational institutions and industry and wider society in the engineering education process

    Software Systems Engineering Programmes A Capability Approach

    No full text
    This paper discusses third-level educational programmes that are intended to prepare their graduates for a career building systems in which software plays a major role. Such programmes are modelled on traditional Engineering programmes but have been tailored to applications that depend heavily on software. Rather than describe knowledge that should be taught, we describe capabilities that students should acquire in these programmes. The paper begins with some historical observations about the software development field
    corecore