51,922 research outputs found

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    A Model-Derivation Framework for Software Analysis

    Get PDF
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

    Full text link
    We present an approach to program reasoning which inserts between a program and its verification conditions an additional layer, the denotation of the program expressed in a declarative form. The program is first translated into its denotation from which subsequently the verification conditions are generated. However, even before (and independently of) any verification attempt, one may investigate the denotation itself to get insight into the "semantic essence" of the program, in particular to see whether the denotation indeed gives reason to believe that the program has the expected behavior. Errors in the program and in the meta-information may thus be detected and fixed prior to actually performing the formal verification. More concretely, following the relational approach to program semantics, we model the effect of a program as a binary relation on program states. A formal calculus is devised to derive from a program a logic formula that describes this relation and is subject for inspection and manipulation. We have implemented this idea in a comprehensive form in the RISC ProgramExplorer, a new program reasoning environment for educational purposes which encompasses the previously developed RISC ProofNavigator as an interactive proving assistant.Comment: In Proceedings THedu'11, arXiv:1202.453

    Program transformation for development, verification, and synthesis of programs

    Get PDF
    This paper briefly describes the use of the program transformation methodology for the development of correct and efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show how by program transformation, one can improve, synthesize, and verify programs

    Termination, correctness and relative correctness

    Get PDF
    Over the last decade, research in verification and formal methods has been the subject of increased interest with the need of more secure and dependable software. At the heart of software dependability is the concept of software fault, defined in the literature as the adjudged or hypothesized cause of an error. This definition, which lacks precision, presents at least two challenges with regard to using formal methods: (1) Adjudging and hypothesizing are highly subjective human endeavors; (2) The concept of error is itself insufficiently defined, since it depends on a detailed characterization of correct system states at each stage of a computation (which is usually unavailable). In the process of defining what a software fault is, the concept of relative correctness, the property of a program to be more-correct than another with respect to a given specification, is discussed. Subsequently, a feature of a program is a fault (for a given specification) only because there exists an alternative to it that would make the program more-correct with respect to the specification. Furthermore, the implications and applications of relative correctness in various software engineering activities are explored. It is then illustrated that in many situations of software testing, fault removal and program repair, testing for relative correctness rather than absolute correctness leads to clearer conclusions and better outcomes. In particular, debugging without testing, a technique whereby, a fault can be removed from a program and the new program proven to be more-correct than the original, all without any testing (and its associated uncertainties/imperfections) is introduced. Given that there are orders of magnitude more incorrect programs than correct programs in use nowadays, this has the potential to expand the scope of proving methods significantly. Another technique, programming without refining, is also introduced. The most important advantage of program derivation by correctness enhancement is that it captures not only program construction from scratch, but also virtually all activities of software evolution. Given that nowadays most software is developed by evolving existing assets rather than producing new assets from scratch, the paradigm of software evolution by correctness enhancements stands to yield significant gains, if we can make it practical

    What is the method in applying formal methods to PLC applications?

    Get PDF
    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system development should be made very clear. Developers and customers ought to understand very well what they can rely on or not, and we see our task in trying to make this explicit. Therefore, for us the answer to the question above leads to the following questions: Which parts of the system can be treated formally? What formal methods and tools can be applied? What does their successful application tell (or does not) about the proper functioning of the whole system

    Program Transformation for Development, Verification, and Synthesis of Software

    Get PDF
    In this paper we briefly describe the use of the program transformation methodology for the development of correct and efficient programs. We will consider, in particular, the case of the transformation and the development of constraint logic programs

    Transformational derivation of programs using the Focus system

    Get PDF
    A program derivation support system called Focus is being constructed. It will formally derive programs using the paradigm of program transformation. The following issues are discussed: (1) the integration of validation and program derivation activities in the Focus system; (2) its tree-based user interface; (3) the control of search spaces in program derivation; and (4) the structure and organization of program derivation records. The inference procedures of the system are based on the integration of functional and logic programming principles. This brings about a synthesis of paradigms that were heretofore considered far apart, such as logical and executable specifications and constructive and transformational approaches to program derivation. A great emphasis has been placed, in the design of Focus, on achieving small search spaces during program derivation. The program manipulation operations such as expansion, simplification and rewriting were designed with this objective. The role of operations that are expensive in search spaces, such as folding, has been reduced. Program derivations are documented in Focus in a way that the high level descriptions of derivations are expressed only using program level information. All the meta-level information, together with dependencies between derivations of program components, is automatically recorded by the system at a lower level of description for its own use in replay

    A Framework to Synergize Partial Order Reduction with State Interpolation

    Full text link
    We address the problem of reasoning about interleavings in safety verification of concurrent programs. In the literature, there are two prominent techniques for pruning the search space. First, there are well-investigated trace-based methods, collectively known as "Partial Order Reduction (POR)", which operate by weakening the concept of a trace by abstracting the total order of its transitions into a partial order. Second, there is state-based interpolation where a collection of formulas can be generalized by taking into account the property to be verified. Our main contribution is a framework that synergistically combines POR with state interpolation so that the sum is more than its parts
    • ā€¦
    corecore