4,620 research outputs found

    Software for Wearable Devices: Challenges and Opportunities

    Full text link
    Wearable devices are a new form of mobile computer system that provides exclusive and user-personalized services. Wearable devices bring new issues and challenges to computer science and technology. This paper summarizes the development process and the categories of wearable devices. In addition, we present new key issues arising in aspects of wearable devices, including operating systems, database management system, network communication protocol, application development platform, privacy and security, energy consumption, human-computer interaction, software engineering, and big data.Comment: 6 pages, 1 figure, for Compsac 201

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases

    Get PDF
    For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising

    Logic-centred architecture for ubiquitous health monitoring

    Get PDF
    One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for\ud multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework\ud with customizable wireless interfaces and plug‘n’play capability to easily interconnect third party sensor devices. It caters to wireless\ud body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment\ud that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual\ud development and remote deployment model. The complementary visual InferenceEngineEditor that comes with the package enables\ud artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components\ud and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a\ud discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications

    A Scenario Analysis of Wearable Interface Technology Foresight

    Get PDF
    Although the importance and value of wearable interface have gradually being realized, wearable interface related technologies and the priority of adopting these technologies have so far not been clearly recognized. To fill this gap, this paper focuses on the technology planning strategy of organizations that have an interest in developing or adopting wearable interface related technologies. Based on the scenario analysis approach, a technology planning strategy is proposed. In this analysis, thirty wearable interface technologies are classified into six categories, and the importance and risk factors of these categories are then evaluated under two possible scenarios. The main research findings include the discovery that most brain based wearable interface technologies are rated high to medium importance and high risk in all scenarios, and that scenario changes will have less impact on voice based as well as gesture based wearable interface technologies. These results provide a reference for organizations and vendors interested in adopting or developing wearable interface technologies

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    Intelligent assisted living framework for monitoring elders

    Get PDF
    Recently, Ambient Intelligence Systems (AmI) in particular Ambient Assisted Living (AAL) are attracting intensive research due to a large variety of application scenarios and an urgent need for elderly in-home assistance. AAL is an emerging multi-disciplinary paradigm aiming at exploiting information and communication technologies in personal healthcare and telehealth systems for countering the effects of growing elderly population. AAL systems are developed to help elderly people living independently by monitoring their health status and providing caregivers with useful information. However, strong contributions are yet to be made on context binding of newly discovered sensors for providing dynamic or/and adaptive UI for caregivers, as the existing solutions (including framework, systems and platforms) are mainly focused on checking user operation history, browser history and applications that are most used by a user for prediction and display of the applications to an individual user. The aim of this paper is to propose a framework for making the adaptive UI from context information (real-time and historical data) that is collected from caregivers (primary user) and elderly people (secondary user). The collected data is processed to produce the contextual information in order to provide assistive services to each individual caregiver. To achieve this, the proposed framework collects the data and it uses a set of techniques (including system learning, decision making) and approaches (including ontology, user profiling) to integrate assistive services at runtime and enable their bindings to specific caregivers, in so doing improving the adaptability parameter of UI for the AAL. © 2017 IEEE
    • …
    corecore