109,424 research outputs found

    Relationship between size, effort, duration and number of contributors in large FLOSS projects

    Get PDF
    This contribution presents initial results in the study of the relationship between size, effort, duration and number of contributors in eleven evolving Free/Libre Open Source Software (FLOSS) projects, in the range from approx. 650,000 to 5,300,000 lines of code. Our initial motivation was to estimate how much effort is involved in achieving a large FLOSS system. Software cost estimation for proprietary projects has been an active area of study for many years. However, to our knowledge, no previous similar research has been conducted in FLOSS effort estimation. This research can help planning the evolution of future FLOSS projects and in comparing them with proprietary systems. Companies that are actively developing FLOSS may benefit from such estimates. Such estimates may also help to identify the productivity ’baseline’ for evaluating improvements in process, methods and tools for FLOSS evolution

    Towards an Early Software Estimation Using Log-Linear Regression and a Multilayer Perceptron Model

    Get PDF
    Software estimation is a tedious and daunting task in project management and software development. Software estimators are notorious in predicting software effort and they have been struggling in the past decades to provide new models to enhance software estimation. The most critical and crucial part of software estimation is when estimation is required in the early stages of the software life cycle where the problem to be solved has not yet been completely revealed. This paper presents a novel log-linear regression model based on the use case point model (UCP) to calculate the software effort based on use case diagrams. A fuzzy logic approach is used to calibrate the productivity factor in the regression model. Moreover, a multilayer perceptron (MLP) neural network model was developed to predict software effortbased on the software size and team productivity. Experiments show that the proposed approach outperforms the original UCP model. Furthermore, a comparison between the MLP and log-linear regression models was conducted based on the size of the projects. Results demonstrate that the MLP model can surpass the regression model when small projects are used, but the log-linear regression model gives better results when estimating larger projects

    Cocomo II as productivity measurement: a case study at KBC.

    Get PDF
    Software productivity is generally measured as the ratio of size over effort, whereby several techniques exist to measure the size. In this paper, we propose the innovative approach to use an estimation model as productivity measurement. This approach is applied in a case-study at the ICT-department of a bank and insurance company. The estimation model, in this case Cocomo II, is used as the norm to judge about productivity of application development projects. This research report describes on the one hand the set-up process of the measurement environment and on the other hand the measurement results. To gain insight in the measurement data, we developed a report which makes it possible to identify productivity improvement areas in the development process of the case-study company.

    COSTMODL: An automated software development cost estimation tool

    Get PDF
    The cost of developing computer software continues to consume an increasing portion of many organizations' total budgets, both in the public and private sector. As this trend develops, the capability to produce reliable estimates of the effort and schedule required to develop a candidate software product takes on increasing importance. The COSTMODL program was developed to provide an in-house capability to perform development cost estimates for NASA software projects. COSTMODL is an automated software development cost estimation tool which incorporates five cost estimation algorithms including the latest models for the Ada language and incrementally developed products. The principal characteristic which sets COSTMODL apart from other software cost estimation programs is its capacity to be completely customized to a particular environment. The estimation equations can be recalibrated to reflect the programmer productivity characteristics demonstrated by the user's organization, and the set of significant factors which effect software development costs can be customized to reflect any unique properties of the user's development environment. Careful use of a capability such as COSTMODL can significantly reduce the risk of cost overruns and failed projects

    COMPARATIVE ANALYSIS OF SOFTWARE EFFORT ESTIMATION USING DATA MINING TECHNIQUE AND FEATURE SELECTION

    Get PDF
    Software development involves several interrelated factors that influence development efforts and productivity. Improving the estimation techniques available to project managers will facilitate more effective time and budget control in software development. Software Effort Estimation or software cost/effort estimation can help a software development company to overcome difficulties experienced in estimating software development efforts. This study aims to compare the Machine Learning method of Linear Regression (LR), Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Decision Tree Random Forest (DTRF) to calculate estimated cost/effort software. Then these five approaches will be tested on a dataset of software development projects as many as 10 dataset projects. So that it can produce new knowledge about what machine learning and non-machine learning methods are the most accurate for estimating software business. As well as knowing between the selection between using Particle Swarm Optimization (PSO) for attributes selection and without PSO, which one can increase the accuracy for software business estimation. The data mining algorithm used to calculate the most optimal software effort estimate is the Linear Regression algorithm with an average RMSE value of 1603,024 for the 10 datasets tested. Then using the PSO feature selection can increase the accuracy or reduce the RMSE average value to 1552,999. The result indicates that, compared with the original regression linear model, the accuracy or error rate of software effort estimation has increased by 3.12% by applying PSO feature selectio

    Effort estimation of FLOSS projects: A study of the Linux kernel

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 SpringerEmpirical research on Free/Libre/Open Source Software (FLOSS) has shown that developers tend to cluster around two main roles: “core” contributors differ from “peripheral” developers in terms of a larger number of responsibilities and a higher productivity pattern. A further, cross-cutting characterization of developers could be achieved by associating developers with “time slots”, and different patterns of activity and effort could be associated to such slots. Such analysis, if replicated, could be used not only to compare different FLOSS communities, and to evaluate their stability and maturity, but also to determine within projects, how the effort is distributed in a given period, and to estimate future needs with respect to key points in the software life-cycle (e.g., major releases). This study analyses the activity patterns within the Linux kernel project, at first focusing on the overall distribution of effort and activity within weeks and days; then, dividing each day into three 8-hour time slots, and focusing on effort and activity around major releases. Such analyses have the objective of evaluating effort, productivity and types of activity globally and around major releases. They enable a comparison of these releases and patterns of effort and activities with traditional software products and processes, and in turn, the identification of company-driven projects (i.e., working mainly during office hours) among FLOSS endeavors. The results of this research show that, overall, the effort within the Linux kernel community is constant (albeit at different levels) throughout the week, signalling the need of updated estimation models, different from those used in traditional 9am–5pm, Monday to Friday commercial companies. It also becomes evident that the activity before a release is vastly different from after a release, and that the changes show an increase in code complexity in specific time slots (notably in the late night hours), which will later require additional maintenance efforts

    A Treeboost Model for Software Effort Estimation Based on Use Case Points

    Get PDF
    Software effort prediction is an important task in the software development life cycle. Many models including regression models, machine learning models, algorithmic models, expert judgment and estimation by analogy have been widely used to estimate software effort and cost. In this work, a Treeboost (Stochastic Gradient Boosting) model is put forward to predict software effort based on the Use Case Point method. The inputs of the model include software size in use case points, productivity and complexity. A multiple linear regression model was created and the Treeboost model was evaluated against the multiple linear regression model, as well as the use case point model by using four performance criteria: MMRE, PRED, MdMRE and MSE. Experiments show that the Treeboost model can be used with promising results to estimate software effort
    corecore