
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

12-2012

A Treeboost Model for Software Effort Estimation
Based on Use Case Points
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Ali Bou Nassif
University of Western Ontario, abounas@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@inproceedings{DBLP:conf/icmla/NassifCHA12, author = {Ali Bou Nassif and Luiz Fernando Capretz and Danny Ho and
Mohammad Azzeh}, title = {A Treeboost Model for Software Effort Estimation Based on Use Case Points}, booktitle = {ICMLA (2)},
year = {2012}, pages = {314-319}, ee = {http://dx.doi.org/10.1109/ICMLA.2012.155}, crossref = {DBLP:conf/icmla/2012-2},
bibsource = {DBLP, http://dblp.uni-trier.de} } @proceedings{DBLP:conf/icmla/2012-2, title = {11th International Conference on
Machine Learning and Applications, ICMLA, Boca Raton, FL, USA, December 12-15, 2012. Volume 2}, booktitle = {ICMLA (2)},
publisher = {IEEE}, year = {2012}, isbn = {978-1-4673-4651-1}, ee = {http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=6403616}, bibsource = {DBLP, http://dblp.uni-trier.de} }

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61639145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

A Treeboost Model for Software Effort Estimation Based on Use Case Points

Ali Bou Nassif and Luiz Fernando Capretz

Department of ECE, Western University
{abounas, lcapretz}@uwo.ca

Danny Ho1 and Mohammad Azzeh2
1NFA Estimation Inc.

2Applied Science University
1danny@nfa-estimation.com

2m.y.azzeh@asu.edu.jo

Abstract--Software effort prediction is an important task in
the software development life cycle. Many models including
regression models, machine learning models, algorithmic
models, expert judgment and estimation by analogy have been
widely used to estimate software effort and cost. In this work,
a Treeboost (Stochastic Gradient Boosting) model is put
forward to predict software effort based on the Use Case
Point method. The inputs of the model include software size in
use case points, productivity and complexity. A multiple linear
regression model was created and the Treeboost model was
evaluated against the multiple linear regression model, as well
as the use case point model by using four performance
criteria: MMRE, PRED, MdMRE and MSE. Experiments
show that the Treeboost model can be used with promising
results to estimate software effort.

Keywords-- Software effort estimation, use case points, project
management, Treeboost Model, Stochastic Gradient Boosting.

I. INTRODUCTION

Predicting software cost and effort with good accuracy has
been a challenge for many project managers and
researchers. The Standish Chaos Report [1] states that 2 out
of 3 projects fail to be delivered on time and within budget.
Several cost estimation techniques have been used for
software effort and cost prediction. These tools include
algorithmic models, expert judgment, estimation by
analogy and machine learning techniques. Software effort
is a function of many factors such as software size and
quality attributes; however, software size is the most
important factor. The Source Lines of Code (SLOC) is one
of the oldest size metrics and has been widely used by
models such as COCOMO [2] and SLIM [3]. The SLOC
metric has been criticized because it cannot be used early
and it depends on the programming language and
technology used to develop the project. Albrecht [4]
introduced the function points metric to tackle the
limitations of the SLOC metric; however, counting
function points is sometimes subjective and complicated.
Another available size metric is the use case points (UCP)
which was proposed by G. Karner [5]. The UCP metric is
computed based on the number and complexity of the use
cases as well as actors in a use case diagram. Use case
diagrams are developed in the requirements stage and they
are usually included in the Software Requirements
Specification (SRS).
In this research, we put forward a novel Treeboost (aka
Stochastic Gradient Boosting) model to predict software

effort from use case diagrams. The Treeboost algorithm
was introduced by J. Friedman [6] [7]. This algorithm was
developed to improve the accuracy of decision trees
models. The inputs of our Treeboost model include
software size, team productivity and project complexity.
Software size is estimated based on the use case point
(UCP) model as described in Section II, A. Team
productivity is computed based on the environmental
factors listed in Table I. Project complexity is estimated
based on the rules proposed in Section IV, B. The
Treeboost model was trained and tested using 59 and 25
data points respectively. To evaluate the Treeboost model,
a multiple linear regression model was developed from the
same 59 data points used to train the Treeboost model. The
proposed Treeboost model is then evaluated against the
multiple linear regression model as well as the UCP model
using four different criteria. The evaluation experiments
showed that the Treeboost model outperforms the multiple
linear regression and UCP models and thus, can be used to
predict software effort with promising results.
 The remainder of this paper is organized as follows:
Section II presents a background of terms used in this
paper. Section III introduces related work whereas Section
IV proposes the Treeboost and multiple linear regression
models. In Section V, the Treeboost model is evaluated.
Section VI lists threats to validity whereas Section VII
concludes the paper and suggests future work.

II. BACKGROUND

This section defines the main terms used in this paper
which includes the UCP model, evaluation criteria,
Treeboost algorithm.

A. Use Case Point Model

The use case point (UCP) model was first described by
Gustav Karner in 1993 [5]. This model is used for software
cost estimation based on the use case diagrams. First, the
software size is calculated according to the number of
actors and use cases in a use case diagram multiplied by
their complexity weights. The software size is calculated
through two stages. These include the Unadjusted Use Case
Points (UUCP) and the Adjusted Use Case Points (UCP).
UUCP is achieved through the summation of the
Unadjusted Use Case Weight (UUCW) and Unadjusted
Actor Weight (UAW). After calculating the UUCP, the
Adjusted Use Case Points (UCP) is calculated. UCP is
achieved by multiplying UUCP by the Technical Factors
(TF) and the Environmental Factors (EF).

For effort estimation, Karner proposed 20 person-hours to
develop each UCP. This approach is not always reasonable
for all software houses so we propose to use the Treeboost
algorithm.

B. Evaluation Criteria

To assess the accuracy of the proposed model, we have
used the most common evaluation criteria used in software
estimation.

 MMRE: This is a very common criterion used to
evaluate software cost estimation models [8]. The
Magnitude of Relative Error (MRE) for each
observation i can be obtained as:

| |

i i

i
i

Actual Effort Predicted Effort
MRE

Actual Effort

 (1)

1

1

N

i
i

MMRE MRE
N

 (2)

MMRE is the most common method used for evaluating
prediction models; however, this method has been
criticized by others such as [9], [10] and [11]. For this
reason, we used a statistical significant test to compare
between the median of two samples based on the residuals.
Since the residuals were not normally distributed, the non-
parametric statistical test Mann-Whitney U has been used
to assess the statistical significance between different
prediction models.

 MdMRE: One of the disadvantages of the MMRE is that
it is sensitive to outliers. MdMRE has been used as
another criterion because it is less sensitive to outliers.

 ()iMdMRE median MRE (3)

 PRED(x): The prediction level (PRED) is used as a
complimentary criterion to MMRE. PRED calculates
the ratio of a project’s MMRE that falls into the
selected range (x) out of the total projects.

 .
k

PRED x
n

 (4)

where k is the number of projects where MREi ≤x and n is
the total number of observations. In this work, PRED(0.25)
and PRED(0.5) have been used.

 MSE: The Mean Squared Error (MSE) is the mean of
the square of the differences between the actual and the
predicted efforts.

2

1

(_ _)
.

N

i i
i

Actual Effort Estimated Effort
MSE

N

 (5)

The estimation accuracy is directly proportional to PRED
(x) and inversely proportional to MMRE, MdMRE and
MSE.

C. Treeboost Model

The Treeboost model is also called Stochastic Gradient
Boosting (SGB) [7]. Boosting is a method to increase the
accuracy of a predictive function by applying the function
frequently in a series and combining the output of each
function. In other words, as Kearns once asked [12], “can a
set of weak learners create a single strong learner?” The
main difference between the Treeboost model and a single
decision tree is that the Treeboost model consists of a series
of trees. The main limitation of the Treeboost is that it acts
like a black box (similar to some neural network models)
and cannot represent a big picture of the problem as a
single decision tree does. The Treeboost model has the
following characteristics:
 The Treeboost uses Huber-M loss function [13] for

regression. This function is a hybrid of ordinary least
squares (OLS) and Least Absolute Deviation (LAD).
For residuals which are less than a cutoff point
(Huber’s Quantile Cutoff), the square of the residuals is
used. Otherwise, absolute values are used. This method
is used to alleviate the influence of outliers. For
outliers, where residuals have high values, squaring the
residuals will lead to huge values, so outliers will be
treated with the “absolute values” method instead. The
Huber’s Quantile Cutoff value is recommended to be
between 0.9 and 0.95. If it is 0.9, the residuals will first
be sorted from small to high. Then, the smallest 90% of
the residuals will be squared (OLS) and the other
residuals (largest 10%) will be treated with the LAD
method.

 In the Stochastic Gradient Boosting algorithm,
“Stochastic” means that instead of using all data for
training, a random percentage of training data points
(50% is recommended) will be used for each iteration
instead. This has yielded an improvement in the results.

 The Stochastic Gradient Boosting (SGB) algorithm has
a factor called Shrinkage factor. Experiments show that
multiplying each tree in the series by this factor
(between 0 and 1) will delay the learning process and
consequently, the length of the series will be longer to
compensate for the shrinkage. This also leads to better
prediction values.

 To improve the optimization of the process, an Influence
Trimming Factor is applied. In the Treeboost model, the
residual errors of a tree are used as inputs to the next
consecutive iteration. The Influence Trimming Factor
allows the rows with small residuals to be excluded. If
this factor is 0.10, rows with residuals that represent less
than 10% of the total residual weight will be ignored.

The Treeboost algorithm is described as:

0() 1* 1() 2* 2() ... * ().F x F A T x A T x AM TM x (6)

Where F(x) is the predicted target, F0 is the starting value, x
is a vector which represents the pseudo-residuals, T1(x) is
the first tree of the series that fits the pseudo-residuals (as
defined below) and A1, A2, etc. are coefficients of the tree
nodes. The Treeboost algorithm is applied based on the
following rules:

1. Find the coefficient of F0. This is the mean of the target
variable (Software Effort).

2. Select the rows that will feed the next tree. If the
stochastic factor is set to 0.5, 50% of the rows will be
randomly chosen.

3. Sort the residuals of the rows being used and transform
the residuals using Huber’s Quantile Cutoff factor. The
transformed residual values are called pseudo-residuals.

4. Fit the first tree (T1) to pseudo-residuals.
5. Calculate the mean of the pseudo-residuals in each of

the terminal nodes. This mean becomes the predicted
variable of the node.

6. Calculate the residuals between the predicted variable
and the pseudo-residuals that fed the tree, and apply
Huber’s Quantile Cutoff factor again. Then, compute
the mean of these residuals.

7. Calculate the boost coefficient (A1) of the node which
is the difference between the mean residual value and
the mean of the predicted values of the tree.

8. Multiply the boost coefficient by the shrink value to
retard the learning process.

III. RELATED WORK

This section presents related work regarding the Treeboost
model and software estimation.
While Treeboost (Stochastic Gradient Boosting) models
have been applied in many areas, to the best of our
knowledge, there is only one modest work [14] where a
Treeboost model was applied on software effort estimation.
M. Elish [14] compares a Stochastic Gradient Boosting
model with other neural and regression models. The main
limitation of Elish’s work is that the Stochastic factor was
set to 1. This means that all data points were used for
training. However, the main goal of the SGB algorithm (the
stochastic part) is that a random portion of the training data
should be used for training as opposed to using all data. By
setting the Stochastic factor to “1”, the Stochastic Boosting
Algorithm will no longer be “stochastic”. Moreover, some
important parameters such as the number of trees and
shrinkage factor are missing. Furthermore, the model and
other neural and regression models were only trained using
18 projects which is insufficient.
Decision trees and fuzzy decision trees algorithms such as
[15], [16], [17] and [18] have been used in software effort
prediction models.
None of the related work proposes a Treeboost model for
software effort estimation from use case diagrams.
Moreover, besides the modest work of Elish [14], we are
among the first who proposed a Treeboost model for
software effort estimation. Another contribution in this

work is that we are simplifying the Use Case Point model
by introducing a new approach to measure the project
complexity.

IV. REGRESSION AND TREEBOOST MODELS

This section introduces the multiple linear regression and
Treeboost models. Our dataset contains 84 projects of
which 70% (59 projects) were randomly chosen to train the
models and 30% (25 projects) were used to test the model.
Each of the proposed models takes 3 inputs which include
software size, productivity and project complexity.

A. Multiple Linear Regression Model

The multiple linear regression model was constructed using
59 data points. A normality test was applied and we found
that “Effort” and “Size” were not normally distributed, so
“ln(effort)” and “ln(size)” were used instead of “Effort”
and “Size”. The equation of the regression model is:

ln() 1.8 1.24 ln() 0.007

0.12 .

Effort Size Productivity

Complexity

 (7)

Where Effort is measured in person-hours and Size in
UCP. Productivity is measured based on Equation (8) and
Complexity is measured as proposed in Section IV, B.
To measure the accuracy of the regression model, we
measured the value of the coefficient of determination R2

which is 0.8. This indicates that 80 % of the variation in
Effort can be explained by the independent variables Size,
Complexity and Productivity. Moreover, we measured the
Analysis of Variance (ANOVA) of Equation (7) and the
model parameters. The “p” value of the model is 0.000
which indicates that the relationship among the variables is
significant. The “p” values of the independent variables
ln(size), productivity and complexity are 0.000, 0.282 and
0.012, respectively. This shows that all independent
variables are statistically significant at the 95% confidence
level except “productivity” (p value > 0.05). Removing the
variable “productivity” will not worsen the accuracy of the
model; however, we decided to keep the “productivity”
variable in the Treeboost model because this variable might
be statistically significant in other data sets. We also
measured the Variance Inflation Factor (VIF) of each
independent variable to see if the multicollinearity issue
(when one independent variable has a relationship with
other independent variables) exists. We found that the
highest VIF factor is for the variable “ln(Size)” which is
1.03. This indicates that the multicollinearity issue does not
exit [19] (VIF is less than 4).

B. Model’s Inputs

The inputs of the model are software size, productivity and
complexity. Software size was estimated based on the UCP
model as described in Section II, A.
The productivity factor was calculated based on Table I
according to this equation:

8

1

.i i

i

Productivity E W

 (8)

Where Ei and Wi are the Environmental factors of the UCP
model and their corresponding weights as depicted in Table
I.

TABLE I. ENVIRONMENTAL FACTORS [5]

Ei Efficiency and Productivity Factors Wi
E1 Familiar with Objectory 1.5
E2 Object oriented experience 1
E3 Analyst capability 0.5
E4 Stable requirements 2
E5 Application experience 0.5
E6 Motivation 1
E7 Part-time workers -1
E8 Difficult programming language -1

The complexity of the project is an important factor in
software effort prediction. Complexity can be interpreted as
an item having two or more elements [20] [21]. There are
two dimensions of complexity. These include business
scope such as schedule, cost, risk and technical aspect
which is the degree of difficulty in building the product
[21]. Technical complexity deals with the number of
components of the product, number of technologies
involved, number of interfaces and types of interfaces [21].
The project complexity can be classified as low
complexity, medium complexity or high complexity [21].
Project complexity should be distinguished from other
project characteristics such as size and uncertainty [20].
Complex projects require more effort to develop than
simple projects that have the same size. In our research, we
identify the project complexity based on five levels (from
Level1 to Level5). The reason behind defining five levels
is to be compatible with other cost estimation models such
as COCOMO where cost drivers are classified into five or
six levels (such as Very Low, Low, Nominal, High, Extra
High). Additionally, this classification is compatible to the
project complexity classification in [21]. Each level has its
corresponding weight. The five complexity levels are
defined as follows:

 Level1: The complexity of a project is classified as
Level1 if the project team is familiar with this type of
project and the team has developed similar projects in the
past. The number and type of interfaces are simple. The
project will be installed in normal conditions where high
security or safety factors are not required. Moreover,
Level1 projects are those of which around 20% of their
design or implementation parts are reused (came from old
similar projects). The weight of the Level1 complexity is
1.
 Level2: This is similar to level1 category with a

difference that only about 10% of these projects are
reused. The weight of the Level2 complexity is 2.

 Level3: This is the normal complexity level where
projects are not said to be simple, nor complex. In this
level, the technology, interface, installation conditions
are normal. Furthermore, no parts of the projects had
been previously designed or implemented. The weight
of the Level3 complexity is 3.

 Level4: In this level, the project is required to be
installed on a complicated topology/architecture such as
distributed systems. Moreover, in this level, the number
of variables and interface is large. The weight of the
Level4 complexity is 4.

 Level5: This is similar to Level4 but with additional
constraints such as a special type of security or high
safety factors. The weight of the Level5 complexity is
5.

The Treeboost model proposed in our research work was
trained using 59 data points based on the parameters listed
in Table II. To avoid overfitting during the training
process, 20% of the training rows were used for validation.
The initial number of trees of the model was set to 1. The
number of the trees is incremented by 1 up to a maximum
number of 1,000. The optimal number of the trees is
determined when the value of the pseudo-residuals is
minimal based on the influence trimming factor. As shown
in Figure 1, best validation results (the blue lower curve
represents the training process and the red upper curve
represents the validation process) were obtained when the
number of trees was 1,000.
The analysis of variance (ANOVA) shows that the
coefficient of determination (R2) and the Root Mean
Squared Error (RMSE) are 0.99 and 2,398, respectively in
the training process. However, the R2 and RMS values in
the validation process are 0.93 and 15,250, respectively.

V. MODEL EVALUATION AND DISCUSSION

This section presents the evaluation of the Treeboost model
against the regression as well as the UCP model based on
the MMRE, PRED, MSE and MAE criteria.

TABLE II. MODEL'S PARAMETERS

of
trees

Huber
Quantile
Cutoff

Shrinkage
Factor

Stochastic
Factor

Influence
Trimming
Factor

1000 0.95 0.1 0.5 0.01

Figure 1. Number of trees

A. Project Dataset

This research is based on software effort prediction from
use case diagrams. We have encountered many difficulties
in acquiring industrial projects because revealing UML
diagrams of projects is considered confidential. For this
reason, we prepared a questionnaire that could help us
obtain industrial data without actually having UML
diagrams. In this questionnaire, we asked for the number of
use cases in each project, the number of transactions of
each use case, actual software effort as well as the project
complexity, and factors contributing to productivity. Eighty
four projects were collected from 3 main sources such that
58 are industrial projects and 26 are educational ones.
Table III shows the characteristics of these datasets.

B. Model Evaluation

The Treeboost model was evaluated using 59 data points
that were not included in the training stage. The criteria
uses are MMRE, MdMRE, PRED(0.25), PRED(0.50) and
MSE. Table IV shows the evaluation values of the
Treeboost, multiple linear regression and UCP models.

TABLE III. DATASETS CHARACTERISTICS

Source Ind1 Ind2 Edu

Min Effort (PH) 4,648 570 850

Max Effort (PH) 129,35
3

224,89
0

2380

Mean Effort 36,849 20,573 1,68
9

Standard Deviation
(Effort)

39,350 47,327 496

Skewness (Effort) 1.37 3.26 -0.24

TABLE IV. MODEL EVALUATION

Criteria Treeboost Regression UCP

MMRE 0.29 0.44 0.38

PRED(25) 64 8 40

PRED(50) 88 60 64

MdMRE 0.14 0.44 0.40

MSE 3.2+e7 5+e8 10+e8

C. Discussion

Table IV shows that the proposed Treeboost model
surpasses the Regression and UCP models by 15% and 9%,
respectively based on the MMRE criterion. Based on the
MdMRE criterion, the Treeboost model surpasses the
Regression and UCP models by 30% and 36%.
Additionally, the Treeboost model gives better results
based on PRED(0.25) and PRED(0.5), and this shows that
the Treeboost model outperforms the other two models. To
confirm the robustness of the Treeboost model, we
measured the non-parametric Mann-Whitney U test
between the Treeboost model and the other two models
based on the MRE as shown in Table V. The Mann-
Whitney U test was chosen because the values of the MRE
were not normally distributed. Results show that the
Treeboost model is statistically significant at the 95%
confidence level.

TABLE V. MANN-WHITNEY U TEST

Models Mann-Whitney (p-value)

Treeboost vs Regression 0.0003

Treeboost vs UCP 0.0361

VI. THREATS TO VALIDITY

1- The Treeboost model is a series of many small trees.
The proposed model consists of 1,000 trees. The model
was trained using 59 projects with efforts ranging
between 507 and 224,890 person-hours. This shows
that there is a significant difference in size between the
smallest and the largest data point. Despite the good
results obtained from the evaluation of the Treeboost
model, this model would perform better if more training
data points would have been used.

2- The neural network and linear/non-linear regression
models have the capability to extrapolate the
relationship between input and output vectors during
the training process and thus, can map outputs to inputs
even if these inputs are beyond (to a certain degree) the
inputs of the training data points. However, this is not
true with Treeboost models. Based on the decision tree
models, the node with the largest number handles the
last decision. The Treeboost model works in a similar
way, but it is more complicated than the single decision
tree. Nonetheless, the proposed Treeboost model also
has limitations determined by the values of the three
independent variables (size, productivity, complexity).
To demonstrate this limitation, the Treeboost model
was tested using an artificial dataset composed of 121
data points with sizes ranging between 1,000 and 4,000
UCP each incremented by 25. Since software size is the
most important predictor in the model, productivity and
complexity values were set to normal values (30 for
productivity and 3 for complexity) for all projects.
Figure (2) shows the Scatterplot graph between

software size and predicted effort. The graph shows that
the predicted effort of any project with a size greater
than 2,475 UCP (productivity = 30 and complexity =3)
is 185,004 person-hours. Although the size limitation
varies based on the values of other predictors
(productivity and complexity), it is not recommended to
use the proposed Treeboost model to test projects of
size more than 2,500 UCP.

Figure 2. Scatterplot of size and predicted effort

VII. CONCLUSIONS

This paper proposed a Treeboost model to predict software
effort based on three independent variables which include
software size, productivity and complexity. The Treeboost
model was developed through a series of 1,000 trees and
was trained using 59 data points. The model was evaluated
using 25 data points against the UCP, as well as a multiple
linear regression model. The evaluation criteria used were
MMRE, PRED, MSE and MdMRE. The proposed model is
limited to projects of size around 2,475 UCP (around
200,000 person-hours). Results showed that the Treeboost
model outperformed the multiple linear regression model as
well as the UCP model in all evaluation criteria. Based on
these results, we conclude that the Treeboost model can be
used for software effort estimation and can compete with
other regression models.
Future work will focus on calibrating the Treeboost model
when new datasets are available.

REFERENCES

[1] J. Lynch. Chaos manifesto. The Standish Group. Boston.
2009[Online]. Available:
http://www.standishgroup.com/newsroom/chaos_2009.php.
[2] B. W. Boehm, Software Engineering Economics. Prentice-
Hall, 1981.
[3] L. H. Putnam, "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem," IEEE Transactions on
Software Engineering, vol. 4, pp. 345-361, 1978.
[4] A. Albrecht, "Measuring application development
productivity," in IBM Application Development Symp. 1979, pp.
83-92.
[5] G. Karner, "Resource Estimation for Objectory Projects,"
Objective Systems, 1993.

[6] J. H. Friedman, "Greedy Function Approximation: A Gradient
Boosting Machine," Annals of Mathematical Statistics, vol. 29,
pp. 1189-1232, 2001.
[7] J. H. Friedman, "Stochastic gradient boosting," Computational
Statistics & Data Analysis, vol. 38, pp. 367-378, 2002.
[8] L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek and K.
D. Maxwell, "An assessment and comparison of common
software cost estimation modeling techniques," in International
Conference on Software Engineering, 1999, pp. 313-322.
[9] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, "A
Simulation Study of the Model Evaluation Criterion MMRE,"
IEEE Transactions on Software Engineering, vol. 29, no. 11, pp.
985-995, 2003.
[10] M. Shepperd and C. Schofield, "Estimating software project
effort using analogies,"IEEE Transactions on Software
Engineering, vol. 23, pp. 736-743, 1997.
[11] I. Myrtveit and E. Stensrud, "Validity and reliability of
evaluation procedures in comparative studies of effort prediction
models," Empirical Software Engineering, vol. 17, pp. 23-33,
2012.
[12] M. Kearns, "Thoughts on Hypothesis Boosting," Machine
Learning Class Project, 1988.
[13] P. J. Huber, "Robust Estimation of a Location Parameter,"
Annals of Mathematical Statistics, vol. 35, pp. 73-101, 1964.
[14] M. O. Elish, "Improved estimation of software project effort
using multiple additive regression trees," Expert Systems with
Applications, vol. 36, pp. 10774-10778, 9, 2009.
[15] K. Srinivasan and D. Fisher, IEEE Transactions on Software
Engineering, vol. 21, pp. 126, 1995.
[16] A. S. Andreou and E. Papatheocharous, "Software cost
estimation using fuzzy decision trees," in 23rd IEEE/ACM
International Conference on Automated Software Engineering
(ASE2008), 2008, pp. 371-374.
[17] S. Huang, C. Lin and N. Chiu, "Fuzzy Decision Tree
Approach for Embedding Risk Assessment Information into
Software Cost Estimation Model," Journal of Information Science
and Engineering, vol. 22, pp. 297-313, 2006.
[18] B. Baskeles, B. Turhan and A. Bener, "Software effort
estimation using machine learning methods," in 22nd
International Symposium on Computer and Information Sciences,
2007, pp. 1-6.
[19] D. C. Montgomery, E. A. Peck and G. G. Vining,
Introduction to Linear Regression Analysis. Wiley, 2012.
[20] D. Baccarini, "The concept of project complexity—a
review," Int. J. Project Manage., vol. 14, pp. 201-204, 8, 1996.
[21] L. Ireland, "Project complexity: A brief exposure to difficult
situations," Asapm, Tech. Rep. PrezSez 10-2007, 2007.

	Western University
	Scholarship@Western
	12-2012

	A Treeboost Model for Software Effort Estimation Based on Use Case Points
	Luiz Fernando Capretz
	Ali Bou Nassif
	Citation of this paper:

	Microsoft Word - Ali-ICMLA-Tree.doc

