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Abstract--Software effort prediction is an important task in 
the software development life cycle. Many models including 
regression models, machine learning models, algorithmic 
models, expert judgment and estimation by analogy have been 
widely used to estimate software effort and cost. In this work, 
a Treeboost (Stochastic Gradient Boosting) model is put 
forward to predict software effort based on the Use Case 
Point method. The inputs of the model include software size in 
use case points, productivity and complexity. A multiple linear 
regression model was created and the Treeboost model was 
evaluated against the multiple linear regression model, as well 
as the use case point model by using four performance 
criteria: MMRE, PRED, MdMRE and MSE. Experiments 
show that the Treeboost model can be used with promising 
results to estimate software effort. 

Keywords-- Software effort estimation, use case points, project 
management, Treeboost Model, Stochastic Gradient Boosting. 

I. INTRODUCTION 

Predicting software cost and effort with good accuracy has 
been a challenge for many project managers and 
researchers. The Standish Chaos Report [1] states that 2 out 
of 3 projects fail to be delivered on time and within budget. 
Several cost estimation techniques have been used for 
software effort and cost prediction. These tools include 
algorithmic models, expert judgment, estimation by 
analogy and machine learning techniques. Software effort 
is a function of many factors such as software size and 
quality attributes; however, software size is the most 
important factor. The Source Lines of Code (SLOC) is one 
of the oldest size metrics and has been widely used by 
models such as COCOMO [2] and SLIM [3]. The SLOC 
metric has been criticized because it cannot be used early 
and it depends on the programming language and 
technology used to develop the project. Albrecht [4] 
introduced the function points metric to tackle the 
limitations of the SLOC metric; however, counting 
function points is sometimes subjective and complicated. 
Another available size metric is the use case points (UCP) 
which was proposed by G. Karner [5]. The UCP metric is 
computed based on the number and complexity of the use 
cases as well as actors in a use case diagram. Use case 
diagrams are developed in the requirements stage and they 
are usually included in the Software Requirements 
Specification (SRS).  
In this research, we put forward a novel Treeboost (aka 
Stochastic Gradient Boosting) model to predict software  
 

effort from use case diagrams. The Treeboost algorithm 
was introduced by J. Friedman [6] [7]. This algorithm was 
developed to improve the accuracy of decision trees 
models. The inputs of our Treeboost model include 
software size, team productivity and project complexity. 
Software size is estimated based on the use case point 
(UCP) model as described in Section II, A. Team 
productivity is computed based on the environmental 
factors listed in Table I. Project complexity is estimated 
based on the rules proposed in Section IV, B. The 
Treeboost model was trained and tested using 59 and 25 
data points respectively. To evaluate the Treeboost model, 
a multiple linear regression model was developed from the 
same 59 data points used to train the Treeboost model. The 
proposed Treeboost model is then evaluated against the 
multiple linear regression model as well as the UCP model 
using four different criteria. The evaluation experiments 
showed that the Treeboost model outperforms the multiple 
linear regression and UCP models and thus, can be used to 
predict software effort with promising results. 
 The remainder of this paper is organized as follows: 
Section II presents a background of terms used in this 
paper. Section III introduces related work whereas Section 
IV proposes the Treeboost and multiple linear regression 
models. In Section V, the Treeboost model is evaluated. 
Section VI lists threats to validity whereas Section VII 
concludes the paper and suggests future work. 

II. BACKGROUND 

This section defines the main terms used in this paper 
which includes the UCP model, evaluation criteria, 
Treeboost algorithm.  

A.  Use Case Point Model 

The use case point (UCP) model was first described by 
Gustav Karner in 1993 [5]. This model is used for software 
cost estimation based on the use case diagrams. First, the 
software size is calculated according to the number of 
actors and use cases in a use case diagram multiplied by 
their complexity weights. The software size is calculated 
through two stages. These include the Unadjusted Use Case 
Points (UUCP) and the Adjusted Use Case Points (UCP). 
UUCP is achieved through the summation of the 
Unadjusted Use Case Weight (UUCW) and Unadjusted 
Actor Weight (UAW). After calculating the UUCP, the 
Adjusted Use Case Points (UCP) is calculated. UCP is 
achieved by multiplying UUCP by the Technical Factors 
(TF) and the Environmental Factors (EF). 



For effort estimation, Karner proposed 20 person-hours to 
develop each UCP. This approach is not always reasonable 
for all software houses so we propose to use the Treeboost 
algorithm.  

B. Evaluation Criteria 

To assess the accuracy of the proposed model, we have 
used the most common evaluation criteria used in software 
estimation. 

 MMRE: This is a very common criterion used to 
evaluate software cost estimation models [8]. The 
Magnitude of Relative Error (MRE) for each 
observation i can be obtained as: 
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MMRE is the most common method used for evaluating 
prediction models; however, this method has been 
criticized by others such as [9], [10] and [11]. For this 
reason, we used a statistical significant test to compare 
between the median of two samples based on the residuals. 
Since the residuals were not normally distributed, the non-
parametric statistical test Mann-Whitney U has been used 
to assess the statistical significance between different 
prediction models. 

 MdMRE: One of the disadvantages of the MMRE is that 
it is sensitive to outliers. MdMRE has been used as 
another criterion because it is less sensitive to outliers. 

 ( )iMdMRE median MRE  (3) 

 PRED(x): The prediction level (PRED) is used as a 
complimentary criterion to MMRE. PRED calculates 
the ratio of a project’s MMRE that falls into the 
selected range (x) out of the total projects. 

    . 
k

PRED x
n

  (4) 

where k is the number of projects where MREi ≤x and n is 
the total number of observations. In this work, PRED(0.25) 
and PRED(0.5) have been used. 

 MSE: The Mean Squared Error (MSE) is the mean of 
the square of the differences between the actual and the 
predicted efforts. 
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The estimation accuracy is directly proportional to PRED 
(x) and inversely proportional to MMRE, MdMRE and 
MSE. 

C. Treeboost Model 

The Treeboost model is also called Stochastic Gradient 
Boosting (SGB) [7]. Boosting is a method to increase the 
accuracy of a predictive function by applying the function 
frequently in a series and combining the output of each 
function. In other words, as Kearns once asked [12], “can a 
set of weak learners create a single strong learner?” The 
main difference between the Treeboost model and a single 
decision tree is that the Treeboost model consists of a series 
of trees. The main limitation of the Treeboost is that it acts 
like a black box (similar to some neural network models) 
and cannot represent a big picture of the problem as a 
single decision tree does. The Treeboost model has the 
following characteristics:  
 The Treeboost uses Huber-M loss function [13] for 

regression. This function is a hybrid of ordinary least 
squares (OLS) and Least Absolute Deviation (LAD). 
For residuals which are less than a cutoff point 
(Huber’s Quantile Cutoff), the square of the residuals is 
used. Otherwise, absolute values are used. This method 
is used to alleviate the influence of outliers. For 
outliers, where residuals have high values, squaring the 
residuals will lead to huge values, so outliers will be 
treated with the “absolute values” method instead. The 
Huber’s Quantile Cutoff value is recommended to be 
between 0.9 and 0.95. If it is 0.9, the residuals will first 
be sorted from small to high. Then, the smallest 90% of 
the residuals will be squared (OLS) and the other 
residuals (largest 10%) will be treated with the LAD 
method. 

 In the Stochastic Gradient Boosting algorithm, 
“Stochastic” means that instead of using all data for 
training, a random percentage of training data points 
(50% is recommended) will be used for each iteration 
instead. This has yielded an improvement in the results. 

 The Stochastic Gradient Boosting (SGB) algorithm has 
a factor called Shrinkage factor. Experiments show that 
multiplying each tree in the series by this factor 
(between 0 and 1) will delay the learning process and 
consequently, the length of the series will be longer to 
compensate for the shrinkage. This also leads to better 
prediction values. 

 To improve the optimization of the process, an Influence 
Trimming Factor is applied. In the Treeboost model, the 
residual errors of a tree are used as inputs to the next 
consecutive iteration. The Influence Trimming Factor 
allows the rows with small residuals to be excluded. If 
this factor is 0.10, rows with residuals that represent less 
than 10% of the total residual weight will be ignored. 

The Treeboost algorithm is described as: 

0( ) 1* 1( ) 2* 2( ) ... * ( ).F x F A T x A T x AM TM x           (6) 



Where F(x) is the predicted target, F0 is the starting value, x 
is a vector which represents the pseudo-residuals, T1(x) is 
the first tree of the series that fits the pseudo-residuals (as 
defined below) and A1, A2, etc. are coefficients of the tree 
nodes. The Treeboost algorithm is applied based on the 
following rules: 

1. Find the coefficient of F0. This is the mean of the target 
variable (Software Effort). 

2. Select the rows that will feed the next tree. If the 
stochastic factor is set to 0.5, 50% of the rows will be 
randomly chosen. 

3. Sort the residuals of the rows being used and transform 
the residuals using Huber’s Quantile Cutoff factor. The 
transformed residual values are called pseudo-residuals.  

4. Fit the first tree (T1) to pseudo-residuals. 
5. Calculate the mean of the pseudo-residuals in each of 

the terminal nodes. This mean becomes the predicted 
variable of the node. 

6. Calculate the residuals between the predicted variable 
and the pseudo-residuals that fed the tree, and apply 
Huber’s Quantile Cutoff factor again. Then, compute 
the mean of these residuals. 

7. Calculate the boost coefficient (A1) of the node which 
is the difference between the mean residual value and 
the mean of the predicted values of the tree. 

8. Multiply the boost coefficient by the shrink value to 
retard the learning process. 

III. RELATED WORK 

This section presents related work regarding the Treeboost 
model and software estimation.  
While Treeboost (Stochastic Gradient Boosting) models 
have been applied in many areas, to the best of our 
knowledge, there is only one modest work [14] where a 
Treeboost model was applied on software effort estimation. 
M. Elish [14] compares a Stochastic Gradient Boosting 
model with other neural and regression models. The main 
limitation of Elish’s work is that the Stochastic factor was 
set to 1. This means that all data points were used for 
training. However, the main goal of the SGB algorithm (the 
stochastic part) is that a random portion of the training data 
should be used for training as opposed to using all data. By 
setting the Stochastic factor to “1”, the Stochastic Boosting 
Algorithm will no longer be “stochastic”. Moreover, some 
important parameters such as the number of trees and 
shrinkage factor are missing. Furthermore, the model and 
other neural and regression models were only trained using 
18 projects which is insufficient. 
Decision trees and fuzzy decision trees algorithms such as 
[15], [16], [17] and [18] have been used in software effort 
prediction models. 
None of the related work proposes a Treeboost model for 
software effort estimation from use case diagrams. 
Moreover, besides the modest work of Elish [14], we are 
among the first who proposed a Treeboost model for 
software effort estimation. Another contribution in this 

work is that we are simplifying the Use Case Point model 
by introducing a new approach to measure the project 
complexity. 

IV. REGRESSION AND TREEBOOST MODELS 

This section introduces the multiple linear regression and 
Treeboost models. Our dataset contains 84 projects of 
which 70% (59 projects) were randomly chosen to train the 
models and 30% (25 projects) were used to test the model. 
Each of the proposed models takes 3 inputs which include 
software size, productivity and project complexity.  

A. Multiple Linear Regression Model 

The multiple linear regression model was constructed using 
59 data points. A normality test was applied and we found 
that “Effort” and “Size” were not normally distributed, so 
“ln(effort)” and “ln(size)” were used instead of “Effort” 
and “Size”. The equation of the regression model is: 

 
ln( ) 1.8 1.24 ln( ) 0.007

0.12 .

Effort Size Productivity

Complexity
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Where Effort is measured in person-hours and Size in 
UCP. Productivity is measured based on Equation (8) and 
Complexity is measured as proposed in Section IV, B. 
To measure the accuracy of the regression model, we 
measured the value of the coefficient of determination R2 

which is 0.8. This indicates that 80 % of the variation in 
Effort can be explained by the independent variables Size, 
Complexity and Productivity. Moreover, we measured the 
Analysis of Variance (ANOVA) of Equation (7) and the 
model parameters. The “p” value of the model is 0.000 
which indicates that the relationship among the variables is 
significant. The “p” values of the independent variables 
ln(size), productivity and complexity are 0.000, 0.282 and 
0.012, respectively. This shows that all independent 
variables are statistically significant at the 95% confidence 
level except “productivity” (p value > 0.05). Removing the 
variable “productivity” will not worsen the accuracy of the 
model; however, we decided to keep the “productivity” 
variable in the Treeboost model because this variable might 
be statistically significant in other data sets. We also 
measured the Variance Inflation Factor (VIF) of each 
independent variable to see if the multicollinearity issue 
(when one independent variable has a relationship with 
other independent variables) exists. We found that the 
highest VIF factor is for the variable “ln(Size)” which is 
1.03. This indicates that the multicollinearity issue does not 
exit [19] (VIF is less than 4).  

B. Model’s Inputs 

The inputs of the model are software size, productivity and 
complexity. Software size was estimated based on the UCP 
model as described in Section II, A. 
The productivity factor was calculated based on Table I 
according to this equation: 
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Where Ei and Wi are the Environmental factors of the UCP 
model and their corresponding weights as depicted in Table 
I.  

TABLE I.  ENVIRONMENTAL FACTORS [5] 

Ei Efficiency and Productivity Factors Wi 
E1 Familiar with Objectory 1.5 
E2 Object oriented experience  1 
E3 Analyst capability 0.5 
E4 Stable requirements 2 
E5 Application experience 0.5 
E6 Motivation 1 
E7 Part-time workers -1 
E8 Difficult programming language -1 

 

The complexity of the project is an important factor in 
software effort prediction. Complexity can be interpreted as 
an item having two or more elements [20] [21]. There are 
two dimensions of complexity. These include business 
scope such as schedule, cost, risk and technical aspect 
which is the degree of difficulty in building the product 
[21]. Technical complexity deals with the number of 
components of the product, number of technologies 
involved, number of interfaces and types of interfaces [21]. 
The project complexity can be classified as low 
complexity, medium complexity or high complexity [21]. 
Project complexity should be distinguished from other 
project characteristics such as size and uncertainty [20]. 
Complex projects require more effort to develop than 
simple projects that have the same size. In our research, we 
identify the project complexity based on five levels (from 
Level1 to Level5). The reason behind defining five levels 
is to be compatible with other cost estimation models such 
as COCOMO where cost drivers are classified into five or 
six levels (such as Very Low, Low, Nominal, High, Extra 
High). Additionally, this classification is compatible to the 
project complexity classification in [21]. Each level has its 
corresponding weight. The five complexity levels are 
defined as follows: 

 Level1: The complexity of a project is classified as 
Level1 if the project team is familiar with this type of 
project and the team has developed similar projects in the 
past. The number and type of interfaces are simple. The 
project will be installed in normal conditions where high 
security or safety factors are not required. Moreover, 
Level1 projects are those of which around 20% of their 
design or implementation parts are reused (came from old 
similar projects). The weight of the Level1 complexity is 
1. 
 Level2: This is similar to level1 category with a 

difference that only about 10% of these projects are 
reused. The weight of the Level2 complexity is 2. 

 Level3: This is the normal complexity level where 
projects are not said to be simple, nor complex. In this 
level, the technology, interface, installation conditions 
are normal. Furthermore, no parts of the projects had 
been previously designed or implemented. The weight 
of the Level3 complexity is 3. 

 Level4: In this level, the project is required to be 
installed on a complicated topology/architecture such as 
distributed systems. Moreover, in this level, the number 
of variables and interface is large. The weight of the 
Level4 complexity is 4. 

 Level5: This is similar to Level4 but with additional 
constraints such as a special type of security or high 
safety factors. The weight of the Level5 complexity is 
5. 

The Treeboost model proposed in our research work was 
trained using 59 data points based on the parameters listed 
in Table II.  To avoid overfitting during the training 
process, 20% of the training rows were used for validation. 
The initial number of trees of the model was set to 1.  The 
number of the trees is incremented by 1 up to a maximum 
number of 1,000. The optimal number of the trees is 
determined when the value of the pseudo-residuals is 
minimal based on the influence trimming factor. As shown 
in Figure 1, best validation results (the blue lower curve 
represents the training process and the red upper curve 
represents the validation process) were obtained when the 
number of trees was 1,000.  
The analysis of variance (ANOVA) shows that the 
coefficient of determination (R2) and the Root Mean 
Squared Error (RMSE) are 0.99 and 2,398, respectively in 
the training process. However, the R2 and RMS values in 
the validation process are 0.93 and 15,250, respectively.  

V. MODEL EVALUATION AND DISCUSSION 

This section presents the evaluation of the Treeboost model 
against the regression as well as the UCP model based on 
the MMRE, PRED, MSE and MAE criteria. 

TABLE II.  MODEL'S PARAMETERS 

# of 
trees 

Huber 
Quantile 
Cutoff 

Shrinkage 
Factor 

 

Stochastic 
Factor  

Influence 
Trimming 
Factor 

1000 0.95 0.1 0.5 0.01 



 

Figure 1.  Number of trees 

A. Project Dataset 

This research is based on software effort prediction from 
use case diagrams. We have encountered many difficulties 
in acquiring industrial projects because revealing UML 
diagrams of projects is considered confidential. For this 
reason, we prepared a questionnaire that could help us 
obtain industrial data without actually having UML 
diagrams. In this questionnaire, we asked for the number of 
use cases in each project, the number of transactions of 
each use case, actual software effort as well as the project 
complexity, and factors contributing to productivity. Eighty 
four projects were collected from 3 main sources such that 
58 are industrial projects and 26 are educational ones. 
Table III shows the characteristics of these datasets. 

B. Model Evaluation 

The Treeboost model was evaluated using 59 data points 
that were not included in the training stage. The criteria 
uses are MMRE, MdMRE, PRED(0.25), PRED(0.50) and 
MSE. Table IV shows the evaluation values of the 
Treeboost, multiple linear regression and UCP models. 

TABLE III.  DATASETS CHARACTERISTICS 

Source Ind1 Ind2 Edu 

Min Effort (PH) 4,648 570 850 

Max Effort (PH) 129,35
3 

224,89
0 

2380 

Mean Effort 36,849 20,573 1,68
9 

Standard Deviation 
(Effort) 

39,350 47,327 496 

Skewness (Effort) 1.37 3.26 -0.24 

TABLE IV.  MODEL EVALUATION 

Criteria Treeboost Regression  UCP 

MMRE 0.29 0.44 0.38 

PRED(25) 64 8 40 

PRED(50) 88 60 64 

MdMRE 0.14 0.44 0.40 

MSE 3.2+e7 5+e8 10+e8 

C. Discussion 

Table IV shows that the proposed Treeboost model 
surpasses the Regression and UCP models by 15% and 9%, 
respectively based on the MMRE criterion. Based on the 
MdMRE criterion, the Treeboost model surpasses the 
Regression and UCP models by 30% and 36%. 
Additionally, the Treeboost model gives better results 
based on PRED(0.25) and PRED(0.5), and this shows that 
the Treeboost model outperforms the other two models. To 
confirm the robustness of the Treeboost model, we 
measured the non-parametric Mann-Whitney U test 
between the Treeboost model and the other two models 
based on the MRE as shown in Table V. The Mann-
Whitney U test was chosen because the values of the MRE 
were not normally distributed. Results show that the 
Treeboost model is statistically significant at the 95% 
confidence level. 

TABLE V.  MANN-WHITNEY U TEST 

Models Mann-Whitney (p-value) 

Treeboost vs Regression 0.0003 

Treeboost vs UCP 0.0361 

VI. THREATS TO VALIDITY 

1- The Treeboost model is a series of many small trees. 
The proposed model consists of 1,000 trees. The model 
was trained using 59 projects with efforts ranging 
between 507 and 224,890 person-hours. This shows 
that there is a significant difference in size between the 
smallest and the largest data point. Despite the good 
results obtained from the evaluation of the Treeboost 
model, this model would perform better if more training 
data points would have been used.  

2- The neural network and linear/non-linear regression 
models have the capability to extrapolate the 
relationship between input and output vectors during 
the training process and thus, can map outputs to inputs 
even if these inputs are beyond (to a certain degree) the 
inputs of the training data points. However, this is not 
true with Treeboost models. Based on the decision tree 
models, the node with the largest number handles the 
last decision. The Treeboost model works in a similar 
way, but it is more complicated than the single decision 
tree. Nonetheless, the proposed Treeboost model also 
has limitations determined by the values of the three 
independent variables (size, productivity, complexity). 
To demonstrate this limitation, the Treeboost model 
was tested using an artificial dataset composed of 121 
data points with sizes ranging between 1,000 and 4,000 
UCP each incremented by 25. Since software size is the 
most important predictor in the model, productivity and 
complexity values were set to normal values (30 for 
productivity and 3 for complexity) for all projects. 
Figure (2) shows the Scatterplot graph between 



software size and predicted effort. The graph shows that 
the predicted effort of any project with a size greater 
than 2,475 UCP (productivity = 30 and complexity =3) 
is 185,004 person-hours. Although the size limitation 
varies based on the values of other predictors 
(productivity and complexity), it is not recommended to 
use the proposed Treeboost model to test projects of 
size more than 2,500 UCP.  

 

 

Figure 2.  Scatterplot of size and predicted effort 

VII. CONCLUSIONS 

This paper proposed a Treeboost model to predict software 
effort based on three independent variables which include 
software size, productivity and complexity. The Treeboost 
model was developed through a series of 1,000 trees and 
was trained using 59 data points. The model was evaluated 
using 25 data points against the UCP, as well as a multiple 
linear regression model. The evaluation criteria used were 
MMRE, PRED, MSE and MdMRE. The proposed model is 
limited to projects of size around 2,475 UCP (around 
200,000 person-hours). Results showed that the Treeboost 
model outperformed the multiple linear regression model as 
well as the UCP model in all evaluation criteria. Based on 
these results, we conclude that the Treeboost model can be 
used for software effort estimation and can compete with 
other regression models. 
Future work will focus on calibrating the Treeboost model 
when new datasets are available. 
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