26 research outputs found

    Software Defined Radio Solutions for Wireless Communications Systems

    Get PDF
    Wireless technologies have been advancing rapidly, especially in the recent years. Design, implementation, and manufacturing of devices supporting the continuously evolving technologies require great efforts. Thus, building platforms compatible with different generations of standards and technologies has gained a lot of interest. As a result, software defined radios (SDRs) are investigated to offer more flexibility and scalability, and reduce the design efforts, compared to the conventional fixed-function hardware-based solutions.This thesis mainly addresses the challenges related to SDR-based implementation of today’s wireless devices. One of the main targets of most of the wireless standards has been to improve the achievable data rates, which imposes strict requirements on the processing platforms. Realizing real-time processing of high throughput signal processing algorithms using SDR-based platforms while maintaining energy consumption close to conventional approaches is a challenging topic that is addressed in this thesis.Firstly, this thesis concentrates on the challenges of a real-time software-based implementation for the very high throughput (VHT) Institute of Electrical and Electronics Engineers (IEEE) 802.11ac amendment from the wireless local area networks (WLAN) family, where an SDR-based solution is introduced for the frequency-domain baseband processing of a multiple-input multipleoutput (MIMO) transmitter and receiver. The feasibility of the implementation is evaluated with respect to the number of clock cycles and the consumed power. Furthermore, a digital front-end (DFE) concept is developed for the IEEE 802.11ac receiver, where the 80 MHz waveform is divided to two 40 MHz signals. This is carried out through time-domain digital filtering and decimation, which is challenging due to the latency and cyclic prefix (CP) budget of the receiver. Different multi-rate channelization architectures are developed, and the software implementation is presented and evaluated in terms of execution time, number of clock cycles, power, and energy consumption on different multi-core platforms.Secondly, this thesis addresses selected advanced techniques developed to realize inband fullduplex (IBFD) systems, which aim at improving spectral efficiency in today’s congested radio spectrum. IBFD refers to concurrent transmission and reception on the same frequency band, where the main challenge to combat is the strong self-interference (SI). In this thesis, an SDRbased solution is introduced, which is capable of real-time mitigation of the SI signal. The implementation results show possibility of achieving real-time sufficient SI suppression under time-varying environments using low-power, mobile-scale multi-core processing platforms. To investigate the challenges associated with SDR implementations for mobile-scale devices with limited processing and power resources, processing platforms suitable for hand-held devices are selected in this thesis work. On the baseband processing side, a very long instruction word (VLIW) processor, optimized for wireless communication applications, is utilized. Furthermore, in the solutions presented for the DFE processing and the digital SI canceller, commercial off-the-shelf (COTS) multi-core central processing units (CPUs) and graphics processing units (GPUs) are used with the aim of investigating the performance enhancement achieved by utilizing parallel processing.Overall, this thesis provides solutions to the challenges of low-power, and real-time software-based implementation of computationally intensive signal processing algorithms for the current and future communications systems

    Low Complexity Wireless Communication Digital Baseband Design

    Get PDF
    abstract: This thesis addresses two problems in digital baseband design of wireless communication systems, namely, those in Internet of Things (IoT) terminals that support long range communications and those in full-duplex systems that are designed for high spectral efficiency. IoT terminals for long range communications are typically based on Orthogonal Frequency-Division Multiple Access (OFDMA) and spread spectrum technologies. In order to design an efficient baseband architecture for such terminals, the workload profiles of both systems are analyzed. Since frame detection unit has by far the highest computational load, a simple architecture that uses only a scalar datapath is proposed. To optimize for low energy consumption, application-specific instructions that minimize register accesses and address generation units for streamlined memory access are introduced. Two parameters, namely, correlation window size and threshold value, affect the detection probability, the false alarm probability and hence energy consumption. Next, energy-optimal operation settings for correlation window size and threshold value are derived for different channel conditions. For both good and bad channel conditions, if target signal detection probability is greater than 0.9, the baseband processor has the lowest energy when the frame detection algorithm uses the longest correlation window and the highest threshold value. A full-duplex system has high spectral efficiency but suffers from self-interference. Part of the interference can be cancelled digitally using equalization techniques. The cancellation performance and computation complexity of the competing equalization algorithms, namely, Least Mean Square (LMS), Normalized LMS (NLMS), Recursive Least Square (RLS) and feedback equalizers based on LMS, NLMS and RLS are analyzed, and a trade-off between performance and complexity established. NLMS linear equalizer is found to be suitable for resource-constrained mobile devices and NLMS decision feedback equalizer is more appropriate for base stations that are not energy constrained.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Hardware Implementation of Filtering Based Sidelobe Suppression for Spectrally Agile Multicarrier based Cognitive Radio Systems

    Get PDF
    Due to the ever increasing dependency on existing wireless technologies and the growing usage of sophisticated wireless devices, the demand for bandwidth is rising exponentially. Also, the Federal Communications Commission (FCC) has reserved a considerable amount of spectrum for licensed users. As a result, the unlicensed spectrum usage is constrained to the overcrowded unlicensed spectrum. Various spectral management surveys have indicated inefficient spectrum utilization in the licensed spectral bands. The congested unlicensed spectrum and inefficiently used licensed frequency bands calls for an approach to use the available spectrum opportunistically. Therefore, the concept of Spectrum Pooling , which is based on Dynamic Spectrum Access (DSA), was proposed to make the unused sections of licensed spectrum available to the unlicensed users. In Spectrum Pooling, an empty section of licensed spectrum is borrowed by a secondary user for certain period of time without interfering with the licensed user. Orthogonal Frequency Division Multiplexing (OFDM) is a transmission scheme that is a candidate for Spectrum Pooling since it is capable of forming an adaptive spectral shape that allows coexistence of licensed and unlicensed users while attemting to minimize any interference. Subcarriers in the OFDM signal can be deactivated to generate Non-Contiguous OFDM (NC-OFDM). Even though NC-OFDM allows efficient use of available spectrum, it causes out of band (OOB) radiation, which adversely affects the performance of adjacent user. This thesis presents two novel techniques for combat the effects of OOB radiation generated by NC-OFDM. The proposed techniques employ a filtering-based approach combined with the technique of windowing in order to suppress the unwanted sidelobes by around 35dB-40dB. The attenuation is achieved without affecting other transmission parameters of the secondary user significantly

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    Reduced-complexity Digital Predistortion in Flexible Radio Spectrum Access

    Get PDF
    Wireless communications is nowadays seen as one of the main foundations of technological advancements in, e.g., healthcare, education, agriculture, transportation, computing, personal communications, media, and entertainment. This requires major technological developments and advances at different levels of the wireless communication systems and networks. In particular, it is required to utilize the currently available frequency spectrum in a more and more efficient way, while also adopting new spectral bands. Moreover, it is required that cheaper and smaller electronic components are used to build future wireless communication systems to facilitate increasingly cost-effective solutions. Meanwhile, energy efficiency becomes extremely important in wide scale deployments of the networks both from a running cost point of view, and from an environmental impact point of view. This is the big picture, or the so called ‘bird’s eye view’ of the challenges that are yet to be met in this very interesting and fast developing field of science.The power amplifier (PA) is the most power-hungry component in most RF transmitters. Consequently, its energy efficiency significantly contributes to the overall energy efficiency of the transmitter, and in fact the whole wireless network. Unfortunately, energy efficiency enhancement implies operating the PA closer to its saturation region, which typically results in severe nonlinear distortion that can deteriorate the signal quality and cause interference to neighboring users, both of which negatively impact the system spectral efficiency. Moreover, in flexible spectrum access scenarios, which are essential for improving the spectral efficiency, particular in the form of non-contiguous radio spectrum access, the nonlinear distortion due to the PA becomes even more severe and can significantly impact the overall network performance. For example, in noncontiguous carrier aggregation (CA) in LTE-Advanced, it has been demonstrated that in addition to the classical in-band distortion and regrowth around the main carriers, harmful spurious emission components are generated which can easily violate the spurious emission limits even in the case of user equipment (UE) transmitters.Technological advances in the digital electronics domain have enabled us to approach this problem from a digital signal processing point of view in the form of widely-adopted and researched digital predistortion (DPD) technology. However, when the signal bandwidth gets larger, and flexible or non-contiguous spectrum access is introduced, the complexity of the DPD increases and the power consumed in the digital domain by the DPD itself becomes higher and higher, to the extent that it might be close to, or even surpass, the energy savings achieved from using a more efficient PA. The problem becomes even more challenging at the UE side which has relatively limited computational capabilities and lower transmit power. This dilemma can be resolved by developing novel reduced-complexity DPD solutions in such flexible spectrum access and/or wide bandwidth scenarios while not sacrificing the DPD performance, which is the main topic area that this thesis work contributes to.The first contribution of this thesis is the development of a spur-injection based sub-band DPD structure for spurious emission mitigation in noncontiguous transmission scenarios. A novel and effective learning algorithm is also introduced, for the proposed sub-band DPD, based on the decorrelation principle. Mathematical models of the unwanted emissions are formulated based on realistic PA models with memory, followed by developing an efficient DPD structure for mitigating these emissions with reducedcomplexity in both the DPD main processing and learning paths while providing excellent spurious emission suppression. In the special case when the spurious emissions overlap with the own RX band in frequency division duplexing (FDD) transceivers, a novel subband DPD solution is also developed that uses the main RX for DPD learning without requiring any additional observation RX, thus further reducing the DPD complexity.The second contribution is the development of a novel reduced-complexity concurrent DPD, with a single-feedback receiver path, for carrier aggregation-like scenarios. The proposed solution is based on a simple and flexible DPD structure with decorrelationbased parameter learning. Practical simulations and RF measurements demonstrate that the proposed concurrent DPD provides excellent linearization performance, in terms of in-band error vector magnitude (EVM) and adjacent channel leakage ratio (ACLR), when compared to state-of-the-art concurrent DPD solutions, despite its reduced computational complexity in both the DPD main path processing and parameter learning.The third contribution is the development of a new and novel frequency-optimized DPD solution which can tailor its linearization capabilities to any particular regions of the spectrum. Detailed mathematical expressions of the power spectrum at the PA output as a function of the DPD coefficients are formulated. A Newton-Raphson optimization routine is then utilized to optimize the suppression of unwanted emissions at arbitrary pre-specified frequencies at the PA output. From a complexity reduction perspective, this means that for a given linearization performance at a particular frequency range, an optimized and reduced-complexity DPD can be used.Detailed quantitative complexity analysis, of all the proposed DPD solutions, is performed in this thesis. The complexity and linearization performance are also compared to state-of-the-art DPD solutions in the literature to validate and demonstrate the complexity reduction aspect without sacrificing the linearization performance. Moreover, all the DPD solutions developed in this thesis are tested in practical RF environments using real cellular power amplifiers that are commercially used in the latest wireless communication systems, both at the base station side and at the mobile terminal side. These experiments, along with the strong theoretical foundation of the developed DPD solutions prove that they can be commercially used as such to enhance the performance, energy efficiency, and cost effectiveness of next generation wireless transmitters

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Physical Layer Techniques for High Frequency Wireline Broadband Systems

    Get PDF
    This thesis collects contributions to wireline and wireless communication systems with an emphasis on multiuser and multicarrier physical layer technology. To deliver increased capacity, modern wireline access systems such as G.fast extend the signal bandwidth up from tens to hundreds of MHz. This ambitious development revealed a number of unforeseen hurdles such as the impact of impedance changes in various forms. Impedance changes have a strong effect on the performance of multi-user crosstalk mitigation techniques such as vectoring. The first part of the thesis presents papers covering the identification of one of these problems, a model describing why it occurs and a method to mitigate its effects, improving line stability for G.fast systems.A second part of the thesis deals with the effects of temperature changes on wireline channels. When a vectored (MIMO) wireline system is initialized, channel estimates need to be obtained. This thesis presents contributions on the feasibility of re-using channel coefficients to speed up the vectoring startup procedures, even after the correct coefficients have changed, e.g., due to temperature changes. We also present extensive measurement results showing the effects of temperature changes on copper channels using a temperature chamber and British cables. The last part of the thesis presents three papers on the convergence of physical layer technologies, more specifically the deployment of OFDM-based radio systems using twisted pairs in different ways. In one proposed scenario, the idea of using the access copper lines to deploy small cells inside users' homes is explored. The feasibility of the concept, the design of radio-heads and a practical scheme for crosstalk mitigation are presented in three contributions

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore