2 research outputs found

    Software consolidation as an efficient energy and cost saving solution for a SaaS/PaaS cloud model

    Get PDF
    International audienceVirtual machines (VM) are used in cloud computing environments to isolate different software. Virtualization enables live migration, and thus dynamic VM consolidation. This possibility can be used to reduce power consumption in the cloud. However, consolidation in cloud environments is limited due to reliance on VMs, mainly due to their memory overhead. For instance, over a 4-month period in a real cloud located in Grenoble (France), we observed that 805 VMs used less than 12 % of the CPU (of the active physical machines). This paper presents a solution introducing dynamic software consolidation. Software consolidation makes it possible to dynamically collocate several software applications on the same VM to reduce the number of VMs used. This approach can be combined with VM consolidation which collocates multiple VMs on a reduced number of physical machines. Software consolidation can be used in a private cloud to reduce power consumption, or by a client of a public cloud to reduce the number of VMs used, thus reducing costs. The evaluation was performed using both the SPECjms2007 benchmark and an enterprise LAMP benchmark on both a VMware private cloud and Amazon EC2 public cloud. The results show that our approach can reduce the energy consumed in our private cloud by about 40 % and the charge for VMs on Amazon EC2 by about 40.5 %

    On Improving The Performance And Resource Utilization of Consolidated Virtual Machines: Measurement, Modeling, Analysis, and Prediction

    Get PDF
    This dissertation addresses the performance related issues of consolidated \emph{Virtual Machines} (VMs). \emph{Virtualization} is an important technology for the \emph{Cloud} and data centers. Essential features of a data center like the fault tolerance, high-availability, and \emph{pay-as-you-go} model of services are implemented with the help of VMs. Cloud had become one of the significant innovations over the past decade. Research has been going on the deployment of newer and diverse set of applications like the \emph{High-Performance Computing} (HPC), and parallel applications on the Cloud. The primary method to increase the server resource utilization is VM consolidation, running as many VMs as possible on a server is the key to improving the resource utilization. On the other hand, consolidating too many VMs on a server can degrade the performance of all VMs. Therefore, it is necessary to measure, analyze and find ways to predict the performance variation of consolidated VMs. This dissertation investigates the causes of performance variation of consolidated VMs; the relationship between the resource contention and consolidation performance, and ways to predict the performance variation. Experiments have been conducted with real virtualized servers without using any simulation. All the results presented here are real system data. In this dissertation, a methodology is introduced to do the experiments with a large number of tasks and VMs; it is called the \emph{Incremental Consolidation Benchmarking Method} (ICBM). The experiments have been done with different types of resource-intensive tasks, parallel workflow, and VMs. Furthermore, to experiment with a large number of VMs and collect the data; a scheduling framework is also designed and implemented. Experimental results are presented to demonstrate the efficiency of the ICBM and framework
    corecore