10,302 research outputs found

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Chunk-Based Bi-Scale Decoder for Neural Machine Translation

    Full text link
    In typical neural machine translation~(NMT), the decoder generates a sentence word by word, packing all linguistic granularities in the same time-scale of RNN. In this paper, we propose a new type of decoder for NMT, which splits the decode state into two parts and updates them in two different time-scales. Specifically, we first predict a chunk time-scale state for phrasal modeling, on top of which multiple word time-scale states are generated. In this way, the target sentence is translated hierarchically from chunks to words, with information in different granularities being leveraged. Experiments show that our proposed model significantly improves the translation performance over the state-of-the-art NMT model.Comment: Accepted as a short paper by ACL 201

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Statistical Machine Translation Features with Multitask Tensor Networks

    Full text link
    We present a three-pronged approach to improving Statistical Machine Translation (SMT), building on recent success in the application of neural networks to SMT. First, we propose new features based on neural networks to model various non-local translation phenomena. Second, we augment the architecture of the neural network with tensor layers that capture important higher-order interaction among the network units. Third, we apply multitask learning to estimate the neural network parameters jointly. Each of our proposed methods results in significant improvements that are complementary. The overall improvement is +2.7 and +1.8 BLEU points for Arabic-English and Chinese-English translation over a state-of-the-art system that already includes neural network features.Comment: 11 pages (9 content + 2 references), 2 figures, accepted to ACL 2015 as a long pape

    Machine translation evaluation resources and methods: a survey

    Get PDF
    We introduce the Machine Translation (MT) evaluation survey that contains both manual and automatic evaluation methods. The traditional human evaluation criteria mainly include the intelligibility, fidelity, fluency, adequacy, comprehension, and informativeness. The advanced human assessments include task-oriented measures, post-editing, segment ranking, and extended criteriea, etc. We classify the automatic evaluation methods into two categories, including lexical similarity scenario and linguistic features application. The lexical similarity methods contain edit distance, precision, recall, F-measure, and word order. The linguistic features can be divided into syntactic features and semantic features respectively. The syntactic features include part of speech tag, phrase types and sentence structures, and the semantic features include named entity, synonyms, textual entailment, paraphrase, semantic roles, and language models. The deep learning models for evaluation are very newly proposed. Subsequently, we also introduce the evaluation methods for MT evaluation including different correlation scores, and the recent quality estimation (QE) tasks for MT. This paper differs from the existing works\cite {GALEprogram2009, EuroMatrixProject2007} from several aspects, by introducing some recent development of MT evaluation measures, the different classifications from manual to automatic evaluation measures, the introduction of recent QE tasks of MT, and the concise construction of the content

    CCG-augmented hierarchical phrase-based statistical machine translation

    Get PDF
    Augmenting Statistical Machine Translation (SMT) systems with syntactic information aims at improving translation quality. Hierarchical Phrase-Based (HPB) SMT takes a step toward incorporating syntax in Phrase-Based (PB) SMT by modelling one aspect of language syntax, namely the hierarchical structure of phrases. Syntax Augmented Machine Translation (SAMT) further incorporates syntactic information extracted using context free phrase structure grammar (CF-PSG) in the HPB SMT model. One of the main challenges facing CF-PSG-based augmentation approaches for SMT systems emerges from the difference in the definition of the constituent in CF-PSG and the ‘phrase’ in SMT systems, which hinders the ability of CF-PSG to express the syntactic function of many SMT phrases. Although the SAMT approach to solving this problem using ‘CCG-like’ operators to combine constituent labels improves syntactic constraint coverage, it significantly increases their sparsity, which restricts translation and negatively affects its quality. In this thesis, we address the problems of sparsity and limited coverage of syntactic constraints facing the CF-PSG-based syntax augmentation approaches for HPB SMT using Combinatory Cateogiral Grammar (CCG). We demonstrate that CCG’s flexible structures and rich syntactic descriptors help to extract richer, more expressive and less sparse syntactic constraints with better coverage than CF-PSG, which enables our CCG-augmented HPB system to outperform the SAMT system. We also try to soften the syntactic constraints imposed by CCG category nonterminal labels by extracting less fine-grained CCG-based labels. We demonstrate that CCG label simplification helps to significantly improve the performance of our CCG category HPB system. Finally, we identify the factors which limit the coverage of the syntactic constraints in our CCG-augmented HPB model. We then try to tackle these factors by extending the definition of the nonterminal label to be composed of a sequence of CCG categories and augmenting the glue grammar with CCG combinatory rules. We demonstrate that our extension approaches help to significantly increase the scope of the syntactic constraints applied in our CCG-augmented HPB model and achieve significant improvements over the HPB SMT baseline
    • 

    corecore