135 research outputs found

    Soft Robotics: State of Art and Outlook

    Get PDF
    Widely used robot systems have a rigid base structure that limits the interaction with their environment. Due to the inflexible attachment points, conventional robotic structures can only manipulate objects with their special gripping system. It can be difficult for these systems to grasp objects with different shapes, handle complex surfaces or navigating in a heavily crowded environment. Many of the species observed in nature, like octopuses are able to perform complex sequences of movements using their soft-structured limbs, which are made up entirely of muscle and connective tissue. Researchers have been inspired to design and build robots based on these soft biological systems. Thanks to the soft structure and high degree of freedom, these soft robots can be used for tasks that would be extremely difficult to perform with traditional robot manipulators. This article discusses the capabilities and usability of soft robots, reviews the state of the art, and outlines the challenges in designing, modelling, manufacturing, and controlling

    Soft Robotics : State of Art and Outlook

    Get PDF
    Widely used robot systems have a rigid base structure that limits the interaction with their environment. Due to the inflexible attachment points, conventional robotic structures can only manipulate objects with their special gripping system. It can be difficult for these systems to grasp objects with different shapes, handle complex surfaces or navigating in a heavily crowded environment. Many of the species observed in nature, like octopuses are able to perform complex sequences of movements using their soft-structured limbs, which are made up entirely of muscle and connective tissue. Researchers have been inspired to design and build robots based on these soft biological systems. Thanks to the soft structure and high degree of freedom, these soft robots can be used for tasks that would be extremely difficult to perform with traditional robot manipulators. This article discusses the capabilities and usability of soft robots, reviews the state of the art, and outlines the challenges in designing, modelling, manufacturing, and controlling

    Soft robotics : state of art and outlook

    Get PDF
    Widely used robot systems have a rigid base structure that limits the interaction with their environment. Due to the inflexible attachment points, conventional robotic structures can only manipulate objects with their special gripping system. It can be difficult for these systems to grasp objects with different shapes, handle complex surfaces or navigating in a heavily crowded environment. Many of the species observed in nature, like octopuses are able to perform complex sequences of movements using their soft-structured limbs, which are made up entirely of muscle and connective tissue. Researchers have been inspired to design and build robots based on these soft biological systems. Thanks to the soft structure and high degree of freedom, these soft robots can be used for tasks that would be extremely difficult to perform with traditional robot manipulators. This article discusses the capabilities and usability of soft robots, reviews the state of the art, and outlines the challenges in designing, modelling, manufacturing, and controlling

    Automated design of pneumatic soft grippers through design-dependent multi-material topology optimization

    Full text link
    In recent years, soft robotic grasping has rapidly spread through the academic robotics community and pushed into industrial applications. At the same time, multimaterial 3D printing has become widely available, enabling monolithic manufacture of devices containing rigid and elastic section. We propose a novel design technique which leverages both of these technologies and is able to automatically design bespoke soft robotic grippers for fruit-picking and similar applications. We demonstrate the novel topology optimisation formulation which generates multi-material soft gippers and is able to solve both the internal and external pressure boundaries, and investigate methods to produce air-tight designs. Compared to existing methods, it vastly expands the searchable design space whilst increasing simulation accuracy

    Improving Structural Design of Soft Actuators Using Finite Element Method Analysis

    Get PDF
    The latest progress in robotics includes the development of so-called soft robots. When it comes to actuation, most of the research in this field is strictly experimental, meaning that performance is observed a posteriori, on previously manufactured specimens. Although significant, results are often incidental and without a proper understanding of how the structure dictates properties of the soft robot. In this article, we propose a parametric modelling procedure of pneumatic soft actuator, in particular the Bellows-type actuator. Finite element method is used to analyse responses of the actuator to different topological changes in the structure. The initial structure of the actuator is represented with a set of parameters upon which simulation is performed. Results of these simulations give us insight into the nature of parameters, revealing which changes are desirable and which are not, depending on the different objectives set. By combining different parameters, the structure is improved in the sense of bending capability while stress in the material is even reduced. Particular attention was paid to the material modelling to achieve realistic results in the simulations
    • …
    corecore