43,474 research outputs found

    Two-stage wireless network emulation

    Get PDF
    Testing and deploying mobile wireless networks and applications are very challenging tasks, due to the network size and administration as well as node mobility management. Well known simulation tools provide a more flexible environment but they do not run in real time and they rely on models of the developed system rather than on the system itself. Emulation is a hybrid approach allowing real application and traffic to be run over a simulated network, at the expense of accuracy when the number of nodes is too important. In this paper, emulation is split in two stages : first, the simulation of network conditions is precomputed so that it does not undergo real-time constraints that decrease its accuracy ; second, real applications and traffic are run on an emulation platform where the precomputed events are scheduled in soft real-time. This allows the use of accurate models for node mobility, radio signal propagation and communication stacks. An example shows that a simple situation can be simply tested with real applications and traffic while relying on accurate models. The consistency between the simulation results and the emulated conditions is also illustrated

    Multinational perspectives on information technology from academia and industry

    Get PDF
    As the term \u27information technology\u27 has many meanings for various stakeholders and continues to evolve, this work presents a comprehensive approach for developing curriculum guidelines for rigorous, high quality, bachelor\u27s degree programs in information technology (IT) to prepare successful graduates for a future global technological society. The aim is to address three research questions in the context of IT concerning (1) the educational frameworks relevant for academics and students of IT, (2) the pathways into IT programs, and (3) graduates\u27 preparation for meeting future technologies. The analysis of current trends comes from survey data of IT faculty members and professional IT industry leaders. With these analyses, the IT Model Curricula of CC2005, IT2008, IT2017, extensive literature review, and the multinational insights of the authors into the status of IT, this paper presents a comprehensive overview and discussion of future directions of global IT education toward 2025

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2
    corecore