8,063 research outputs found

    Minds Online: The Interface between Web Science, Cognitive Science, and the Philosophy of Mind

    Get PDF
    Alongside existing research into the social, political and economic impacts of the Web, there is a need to study the Web from a cognitive and epistemic perspective. This is particularly so as new and emerging technologies alter the nature of our interactive engagements with the Web, transforming the extent to which our thoughts and actions are shaped by the online environment. Situated and ecological approaches to cognition are relevant to understanding the cognitive significance of the Web because of the emphasis they place on forces and factors that reside at the level of agent–world interactions. In particular, by adopting a situated or ecological approach to cognition, we are able to assess the significance of the Web from the perspective of research into embodied, extended, embedded, social and collective cognition. The results of this analysis help to reshape the interdisciplinary configuration of Web Science, expanding its theoretical and empirical remit to include the disciplines of both cognitive science and the philosophy of mind

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Improving social game engagement on Facebook through enhanced socio-contextual information

    Get PDF
    In this paper we describe the results of a controlled study of a social game, Magpies, which was built on the Facebook Online Social Network (OSN) and enhanced with contextual social information in the form of a variety of social network indices. Through comparison with a concurrent control trial using an identical game without the enhanced social information, it was shown that the additional contextual data increased the frequency of social activity between players engaged in the game. Despite this increase in activity, there was little increase in growth of the player-base when compared to the control condition. These findings corroborate previous work that showed how socio-contextual enhancement can increase performance on task-driven games, whilst also suggesting that it can increase activity and engagement when provided as context for non task-driven game environments

    Robust modeling of human contact networks across different scales and proximity-sensing techniques

    Full text link
    The problem of mapping human close-range proximity networks has been tackled using a variety of technical approaches. Wearable electronic devices, in particular, have proven to be particularly successful in a variety of settings relevant for research in social science, complex networks and infectious diseases dynamics. Each device and technology used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with specific biases on the close-range relations it records. Hence it is important to assess which statistical features of the empirical proximity networks are robust across different measurement techniques, and which modeling frameworks generalize well across empirical data. Here we compare time-resolved proximity networks recorded in different experimental settings and show that some important statistical features are robust across all settings considered. The observed universality calls for a simplified modeling approach. We show that one such simple model is indeed able to reproduce the main statistical distributions characterizing the empirical temporal networks

    Understanding the Cognitive Impact of Emerging Web Technologies: A Research Focus Area for Embodied, Extended and Distributed Approaches to Cognition

    No full text
    Alongside existing research into the social, political and economic impacts of the Web, there is also a need to explore the effects of the Web on our cognitive profile. This is particularly so as the range of interactive opportunities we have with the Web expands under the influence of a range of emerging technologies. Embodied, extended and distributed approaches to cognition are relevant to understanding the potential cognitive impact of these new technologies because of the emphasis they place on extra-neural and extra-corporeal factors in the shaping of our cognitive capabilities at both an individual and collective level. The current paper outlines a number of areas where embodied, extended and distributed approaches to cognition are useful in understanding the impact of emerging Web technologies on future forms of both human and machine intelligence

    Temporal networks of face-to-face human interactions

    Full text link
    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series: Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials
    • 

    corecore