3 research outputs found

    Characterizing the Energy Trade-Offs of End-to-End Vehicular Communications using an Hyperfractal Urban Modelling

    Get PDF
    We characterize trade-offs between the end-to-end communication delay and the energy in urban vehicular communications with infrastructure assistance. Our study exploits the self-similarity of the location of communication entities in cities by modeling them with an innovative model called "hyperfractal". We show that the hyperfractal model can be extended to incorporate road-side infrastructure and provide stochastic geometry tools to allow a rigorous analysis. We compute theoretical bounds for the end-to-end communication hop count considering two different energy-minimizing goals: either total accumulated energy or maximum energy per node. We prove that the hop count for an end-to-end transmission is bounded by O(n1−α/(dF−1))O(n^{1-\alpha/(d_F-1)}) where α2\alpha2 is the fractal dimension of the mobile nodes process. This proves that for both constraints the energy decreases as we allow choosing routing paths of higher length. The asymptotic limit of the energy becomes significantly small when the number of nodes becomes asymptotically large. A lower bound on the network throughput capacity with constraints on path energy is also given. We show that our model fits real deployments where open data sets are available. The results are confirmed through simulations using different fractal dimensions in a Matlab simulator

    Socially inspired relaying and proactive mode selection in mmWave vehicular communications

    Get PDF
    As the Internet of Vehicles matures and acquires its social flavor, novel wireless connectivity enablers are being demanded for reliable data transfer in high-rate applications. The recently ratified New Radio communications technology operates in millimeter-wave (mmWave) spectrum bands and offers sufficient capacity for bandwidth-hungry services. However, seamless operation over mmWave is difficult to maintain on the move, since such extremely high frequency radio links are susceptible to unexpected blockage by various obstacles, including vehicle bodies. As a result, proactive mode selection, that is, migration from infrastructure- to vehicle-based connections and back, is becoming vital to avoid blockage situations. Fortunately, the very social structure of interactions between the neighboring smart cars and their passengers may be leveraged to improve session continuity by relaying data via proximate vehicles. This paper conceptualizes the socially inspired relaying scenarios, conducts underlying mathematical analysis, continues with a detailed 3-D modeling to facilitate proactive mode selection, and concludes by discussing a practical prototype of a vehicular mmWave platform.acceptedVersionPeer reviewe

    Socially Inspired Relaying and Proactive Mode Selection in mmWave Vehicular Communications

    No full text
    corecore