285 research outputs found

    Online Collaborative Prediction of Regional Vote Results

    Get PDF
    We consider online predictions of vote results, where regions across a country vote on an issue under discussion. Such online predictions before and during the day of the vote are useful to media agencies, polling institutes, and political parties, e.g., to identify regions that are crucial in determining the national outcome of a vote. We analyze a unique dataset from Switzerland. The dataset contains 281 votes from 2352 regions over a period of 34 years. We make several contributions towards improving online predictions. First, we show that these votes exhibit a bi-clustering of the vote results, i.e., regions that are spatially close tend to vote similarly, and issues that discuss similar topics show similar global voting patterns. Second, we develop models that can exploit this bi-clustering, as well as the features associated with the votes and regions. Third, we show that, when combining vote results and features together, Bayesian methods are essential to obtaining good performance. Our results show that Bayesian methods give better estimates of the hyperparameters than non-Bayesian methods such as cross-validation. The resulting models generalize well to many different tasks, produce robust predictions, and are easily interpretable

    Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting

    Get PDF
    Background: Periodically, humanity is often faced with new and emerging viruses that can be a significant global threat. It has already been over a century post—the Spanish Flu pandemic, and we are witnessing a new type of coronavirus, the SARS-CoV-2, which is responsible for Covid-19. It emerged from the city of Wuhan (China) in December 2019, and within a few months, the virus propagated itself globally now resulting more than 50 million cases with over 1 million deaths. The high infection rates coupled with dynamic population movement demands for tools, especially within a Brazilian context, that will support health managers to develop policies for controlling and combating the new virus. / Methods: In this work, we propose a tool for real-time spatio-temporal analysis using a machine learning approach. The COVID-SGIS system brings together routinely collected health data on Covid-19 distributed across public health systems in Brazil, as well as taking to under consideration the geographic and time-dependent features of Covid-19 so as to make spatio-temporal predictions. The data are sub-divided by federative unit and municipality. In our case study, we made spatio-temporal predictions of the distribution of cases and deaths in Brazil and in each federative unit. Four regression methods were investigated: linear regression, support vector machines (polynomial kernels and RBF), multilayer perceptrons, and random forests. We use the percentage RMSE and the correlation coefficient as quality metrics. / Results: For qualitative evaluation, we made spatio-temporal predictions for the period from 25 to 27 May 2020. Considering qualitatively and quantitatively the case of the State of Pernambuco and Brazil as a whole, linear regression presented the best prediction results (thematic maps with good data distribution, correlation coefficient >0.99 and RMSE (%) <4% for Pernambuco and around 5% for Brazil) with low training time: [0.00; 0.04 ms], CI 95%. / Conclusion: Spatio-temporal analysis provided a broader assessment of those in the regions where the accumulated confirmed cases of Covid-19 were concentrated. It was possible to differentiate in the thematic maps the regions with the highest concentration of cases from the regions with low concentration and regions in the transition range. This approach is fundamental to support health managers and epidemiologists to elaborate policies and plans to control the Covid-19 pandemics

    Social Networks

    Get PDF
    We survey the literature on social networks by putting together the economics, sociological and physics/applied mathematics approaches, showing their similarities and differences. We expose, in particular, the two main ways of modeling network formation. While the physics/applied mathematics approach is capable of reproducing most observed networks, it does not explain why they emerge. On the contrary, the economics approach is very precise in explaining why networks emerge but does a poor job in matching real-world networks. We also analyze behaviors on networks, which take networks as given and focus on the impact of their structure on individuals’ outcomes. Using a game-theoretical framework, we then compare the results with those obtained in sociology.random graph, game theory, centrality measures, network formation, weak and strong ties

    Social Networks

    Get PDF
    We survey the literature on social networks by putting together the economics, sociological and physics/applied mathematics approaches, showing their similarities and differences. We expose, in particular, the two main ways of modeling network formation. While the physics/applied mathematics approach is capable of reproducing most observed networks, it does not explain why they emerge. On the contrary, the economics approach is very precise in explaining why networks emerge but does a poor job in matching real-world networks. We also analyze behaviors on networks, which take networks as given and focus on the impact of their structure on individuals’ outcomes. Using a game-theoretical framework, we then compare the results with those obtained in sociology.Random Graph; Game Theory; Centrality Measures; Network Formation; Weak

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)

    FUSING PHYSICAL AND SOCIAL SENSORS FOR SITUATION AWARENESS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aesthetic Experiences Across Cultures: Neural Correlates When Viewing Traditional Eastern or Western Landscape Paintings

    Get PDF
    Compared with traditional Western landscape paintings, Chinese traditional landscape paintings usually apply a reversed-geometric perspective and concentrate more on contextual information. Using functional magnetic resonance imaging (fMRI), we discovered an intracultural bias in the aesthetic appreciation of Western and Eastern traditional landscape paintings in European and Chinese participants. When viewing Western and Eastern landscape paintings in an fMRI scanner, participants showed stronger brain activation to artistic expressions from their own culture. Europeans showed greater activation in visual and sensory-motor brain areas, regions in the posterior cingulate cortex (PCC), and hippocampus when viewing Western compared to Eastern landscape paintings. Chinese participants exhibited greater neural activity in the medial and inferior occipital cortex and regions of the superior parietal lobule in response to Eastern compared to Western landscape paintings. On the behavioral level, the aesthetic judgments also differed between Western and Chinese participants when viewing landscape paintings from different cultures; Western participants showed for instance higher valence values when viewing Western landscapes, while Chinese participants did not show this effect when viewing Chinese landscapes. In general, our findings offer differentiated support for a cultural modulation at the behavioral level and in the neural architecture for high-level aesthetic appreciation

    Parental Coping Socialization is Associated with Healthy and Anxious Early-Adolescents’ Neural and Real-World Response to Threat

    Get PDF
    The ways parents socialize their adolescents to cope with anxiety (i.e. coping socialization) may be instrumental in the development of threat processing and coping responses. Coping socialization may be important for anxious adolescents, as they show altered neural threat processing and over-reliance on disengaged coping (e.g., avoidance and distraction), which can maintain anxiety. We investigated whether coping socialization was associated with anxious and healthy adolescents’ neural response to threat, and whether neural activation was associated with disengaged coping. Healthy and clinically anxious early-adolescents (N=120; M=11.46 years; 71 girls) and a parent engaged in interactions designed to elicit adolescents’ anxiety and parents’ response to adolescents’ anxiety. Parents’ use of reframing and problem-solving statements was coded to measure coping socialization. In a subsequent visit, we assessed adolescents’ neural response to threat words during a neuroimaging task. Adolescents’ disengaged coping was measured using ecological momentary assessment. Greater coping socialization was associated with lower anterior insula and perigenual cingulate activation in healthy adolescents and higher activation in anxious adolescents. Coping socialization was indirectly associated with less disengaged coping for anxious adolescents through neural activation. Findings suggest that associations between coping socialization and early adolescents’ neural response to threat differ depending on clinical status and have implications for anxious adolescents’ coping
    corecore