
FUSING PHYSICAL AND SOCIAL

SENSORS FOR SITUATION AWARENESS

YUHUI WANG

(M.Eng.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2017



Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Yuhui Wang

25 February 2017

i



Acknowledgements

First and foremost, I would like to express my sincere and deepest gratitude

to my advisor Professor Mohan S Kankanhalli. Thank you so much for your

professional and inspiring guidance during my whole Ph.D. study. I will never

forget your continuous encouragement, especially the motivating stories, you

have given me that makes me overcome all the obstacles in the past four years.

It has been a great privilege to work with you and learn from you about how

to become a mature, self-motivated, hard-working yet humble man.

Second, I would like to show my gratitude to the members of my thesis

committee, Professor Roger Zimmermann and Professor Qi Zhao. Thank you

for all your insightful comments and valuable inputs in my TAC meetings,

which greatly help to shape my thesis and most importantly, make me con-

fident and excited about my research. Also, thanks to my thesis examiner

Professor Terence Sim for the precious comments and suggestions for the final

version. I also appreciate my cousin Justin Wang’s proof reading of thesis for

correcting the mistakes and offering better modification suggestions.

My research journey would not have been as exciting without the countless

discussions with so many prestigious professors and excellent researchers in-

cluding Professor Ramesh Jain, Vivek Singh, Dr. Christian von der Weth and

Dr. Thomas Winkler. Thank you very much for your valuable time, helpful

comments and excellent ideas shared with me.

I am grateful for NGS and SoC offering me such a stimulating academic

environment in NUS. The considerable student support, diverse inspiring sem-

inars, first-class facilities and financial support, all leave me with an enjoyable

study experience here.

My lab mates and friends have also supported me at different great times.

I would like to especially thank Dr. Gan Tian, Dr. Prabhu, Dr. Padmanab-

ha, Dr. Yongkang and my friends Huang Zhi, Francesco, Luo Yan, Zhongtao,

ii



Yinan, Lin Hang, Lian Yi, Mulong and all my other friends for their encour-

agement and unconditional companionship in my school life.

Lastly, I would like to thank my parents, for all the love and unyielding

support they have given me during my study abroad. My debt to them is

beyond measure; without their affection, support and sacrifices, I would have

never obtained such a great opportunity to receive a higher education which

shapes me to who I am today.

iii



Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation and Research Problems . . . . . . . . . . . . . . . 9

1.3 Scope and Contributions . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related Works 15

2.1 Physical Sensors Fusion for Situation Understanding . . . . . . 15

2.2 Social Sensors for Event Detection . . . . . . . . . . . . . . . . 21

2.3 Fusing Heterogeneous Information . . . . . . . . . . . . . . . . 27

3 Tweeting Cameras for Event Detection 34

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Multi-layer Tweeting Camera Framework . . . . . . . . . . . . 36

3.3 Processing Framework . . . . . . . . . . . . . . . . . . . . . . 41

3.4 A New Paradigm of Socialized Sensors: Realization of Tweeting

Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 54

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



4 Cmage Based Hybrid Fusion of Physical and Social Sensors 71

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 80

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A Matrix Factorization Based Framework for Fusion of Phys-

ical and Social Sensors 86

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion 111

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

v



Summary

With the prevalence of physical sensors and social sensors, we are now living

in a world of big sensor data. There are mainly two types of sensors that are

constantly monitoring our surroundings: (a) physical sensors such as CCTV

cameras, accelerometers, gyroscopes, mobile phones, RFID tags, temperature

sensors, humidity sensors, etc. and (b) social sensors like social networking

sites (e.g., YouTube, Youku, Facebook, Twitter, Weibo, Wechat) containing

user-generated content reporting events in all kinds of formats (text, image or

video).

Though theses sensors generate heterogeneous data, they often provide

complementary information about the surroundings; and their ambient sensing

capabilities provide the opportunity for humans and machines to work together

to make sense of ongoing situations. Independently analyzing either one of

these two types sensor stream data will result in an incomplete understanding

of evolving situations. Therefore, such massive amount of various information

from diverse sensor sources calls for a fusion mechanism that combines their

information to provide a more holistic view of what is happening.

However, the fusion of physical sensors and social sensors for situation

awareness is still in its infancy. It lacks a unified framework to aggregate

and composite real-time media streams from diverse sensors and social net-

work platforms. Heterogeneous data from different modalities, different spatio-

temporal resolution, and sensor noise in the huge volume information pose a

big challenge.

In this thesis, we aim to fuse physical sensors (i.e. CCTV camera, weather

stations) information with social sensors (Twitter) information through dif-

ferent frameworks and methods, so as to detect the occurrence of large-scale

events, enable spatial prediction of situations as well as enhance situation un-

derstanding.
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First, we proposed an innovative multi-layer tweeting cameras framework

integrating CCTV camera feeds with surrounding geo-tagged Twitter content

to detect various concepts of real-world events. Specifically, we applied visual

concept detectors on cameras and construed detected concepts as regularly

posted “camera tweets”. We represented these camera tweets using a unified

data structure named probabilistic spatio-temporal (PST), which was then

aggregated to a concept-based image (Cmage) as a common representation

for visualization. In addition, a set of operators and analytic functions were

defined so that a user can apply them on the PST data to discover occurrences

of events or analyze evolving situations. Mining emerging topics discussed

on Twitter, we obtain the high-level semantic meaning of detected events

in images. The conceptual framework is implemented and showcased by a

Raspberry Pi based “tweeting camera” that is able to sense, analyze, learn

and “tweet” on Twitter, with humans in the sensing loop.

Second, we proposed a novel hybrid fusion strategy which, based on the

Cmage representation from our first work, models sparse sensor information

using Gaussian Process, fuses event signals with a Bayesian approach, and in-

corporates spatial relations between sensor and social observations. This work

shows that the proposed approach can reduce the sensor-related noise, locate

event place, improve event detection reliability, and add semantic context for

further interpretation of events.

Third, we proposed a novel unified matrix factorization based model to

fuse physical and social sensor signals for spatio-temporal analysis. Readings

of physical sensors signals are represented by a spatio-temporal situation ma-

trix, which then incorporates social content that can provide explanations for

the physical signal strengths. This work improves the detection of an event

and enables situation prediction by leveraging correlation of the two types of

sensors.

To sum up, the three works have explored fusion method for physical and

vii



social sensors from different aspects. The conducted experiments suggest that

fusing complementary sensor information can help humans have a better un-

derstanding of evolving situations. In the end, the thesis concludes with find-

ings and gives possible future directions for multimodal sensor fusion research.
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Chapter 1

Introduction

We are currently witnessing an explosion of digital data in the age of big

data [72], in particular, big sensor data. With the prevalent use of sensing

devices, the rise of internet-of-things, and the rapid growth of social medi-

a [75], humans and devices are more connected than ever before, and society

is becoming increasingly more instrumented, generating vast amounts of in-

formation describing ongoing situations and occurring events. On one hand,

sensors are widely distributed due to the decrease in cost and the develop-

ment of embedded systems and integrated chips. These sensors endowed with

sensing, processing and communicating capabilities, are constantly monitoring

our environment and detecting real-world events in a non-invasive and timely

manner. From visual sensors to wearable or mobile sensors, we consider these

sensing devices as physical sensors including cameras, accelerometers, gy-

roscopes, mobile phones, RFID tags, temperature sensors, humidity sensors,

etc. Applications of physical sensors in situation awareness range from surveil-

lance [85, 97], smart homes [108], to event detection [51]. On the other hand,

fast-growing online social networks services and platforms such as Twitter,

Weibo, Facebook, Youtube, Wechat and etc., are resulting in an increasing

amount of user-generated content. Humans using such social media platforms
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Chapter 1. Introduction

to post timely reports can be regarded as social sensors [98], which also en-

able a wide range of situation awareness applications such as large-scale event

detection [23], noise pollution detection [44], citizen sensing [102] and various

spatio-temporal pattern analysis [105].

Although these two types of sensors observe our surrounding utilizing d-

ifferent mechanisms with respect to their sensing rate, spatial distribution,

signal presentation, they both monitor the same environment and view sit-

uations from different but complementary perspectives. This demands the

combination and fusion of these sources’ information for a holistic view of

ongoing situations. However, due to the diversity of these sources and differ-

ent modalities of their sensing data, fusing their information together is a big

challenge. This dissertation identifies and tackles the challenges in the field

of physical and social sensor fusion. It proposes different methods of combin-

ing and fusing them in order to provide a better understanding of ongoing

situations.

In the rest of this chapter, we first provide the background of situation

understanding using physical sensors and social sensors in Section 1.1, and

a brief introduction of multimodal sensor fusion. Section 1.2 describes the

motivations and the scientific problems in our works, followed by our research

contributions in Section 1.3. In the end, we provide an outline of this thesis.

1.1 Background

1.1.1 Situation Awareness and Event Detection

“Situation” has considerably varying definitions across different domains such

as robotics [78], context awareness [81], control system [74], surveillance [122],

and military [33]. A general definition describes situational awareness as “the

perception of the elements in the environment within a volume of time and

2



Chapter 1. Introduction

space, comprehension of their meaning and the projection of their status in

the near future” [32]. It is described by a model containing three hierarchical

phases [34], namely, perception of the elements in the environment (level 1),

comprehension of the current situation (level 2), and projection of future status

(level 3). From perception to decision making, a situation has been recent-

ly computationally defined as “an actionable abstraction of observed spatio-

temporal descriptors” [104], by which humans are able to generate actionable

insights from diverse data streams. Situation awareness (SA) applications deal

with recognizing when sensed data could lead to actionable knowledge [90].

Summarizing the above definitions, SA in human/machine systems involves

two aspects: external and internal. The external aspect describes information

within the region of time and space that is observed by sensors or environment

measuring devices, while the internal aspects relate to human perception and

inferences drawn from external information and predictions. Specifically, we

refer external information to the streaming data captured by physical sensors

monitoring the physical world and the internal information resides in the social

sensors detecting events derived from human interpretation. The distinction

is respect to the whole system with human interaction involved, and the deci-

sion maker is a user who uses the system which fuses multi-source information.

To a human, external information means the physical sensors which capture

objective event signals, whereas internal information means the relative sub-

jective social sensors information, which is easier for the user to interpret.

Central to the problem of situation awareness is that of detecting, analyzing

and predicting occurring events that characterize particular spatial, temporal

as well as semantic patterns. We adopt the definition of SA from [104] as “An

actionable abstraction of observed spatio-temporal descriptors.” Specifically,

the “abstraction” is represented by semantic concepts extracted from physical

sensors and trending topics from social sensors. An event is composed of a set

of correlated concepts from a particular spatio-temporal point and the situa-
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Chapter 1. Introduction

tion is the understanding and evolvement of an event across a larger area in

a longer time series. The conceptual illustration of our idea of fusing physical

and social sensors for situation awareness is shown in Figure 1.1. It represents

fused sensor streams for understanding ongoing situations, which include d-

ifferent elements in the pipeline of situation understanding from initial data

collecting to final event visualization:

Figure 1.1: Tweeting Cameras and Twitter Tweets for Event Detection.

1. Data Capture

The data used can be from either physical sensors or social sensors. D-

ifferent multimedia streams entail diverse data collection mechanisms to

capture heterogeneous sensor measurements. The data streams can o-

riginate from a personal mobile device, social network updates, videos

captured by cameras, new information from websites or archived data

sources, describing dynamics of a region (e.g., state of the civil, occurring

events, or transportation and information infrastructures). Therefore, a

fusion framework should be durable to support a large number of differ-
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Chapter 1. Introduction

ent types of raw data relevant to a particular situation.

2. Information Aggregation

The data captured from different sensor sources should be combined

and aggregated in a unified format so that they are suitable for further

analysis. Modules processing data of various sensor types should be

coupled and integrated seamlessly for information analysis in a multi-

sensor situation awareness framework.

3. Spatio-temporal-semantic Dynamics

Based on the properties of situation awareness (SA), time, space and

semantic information are the most significant elements that constitute

the description of the situation. On one hand, temporal information

indicates when events happen as well as the status evolution in a time

frame. On the other hand, spatial information provides knowledge of hot

spots of the events. In addition, the comprehension of dynamic situations

should be expressed by the information with semantic meaning.

4. Multimodal Fusion

To detect or recognize dynamic situations, a set of appropriate data

operators and analysis tools aiming at pattern mining and event learning

should be built in the situation awareness system. Fusing data from

different sensors involves converting data from raw format to low-level

features and then high-level decisions; it is necessary to create operators

or data analyser targeting at extracting multi-level information from

both physical and social sensor data streams.

5. Event Visualization To facilitate human understanding about a situ-

ation, it is necessary to utilize a suitable visualization tool for situation

representation. Possible visualization tools include maps, timeline, or

storyboard. The visualization should ideally present the evolving situ-
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Chapter 1. Introduction

ation or social dynamic in an efficient and direct way, in which basic

situation elements such as time, location, event name, and information

quantity are presented in a holistic view.

A situation is usually implicitly captured by signals from streams of dif-

ferent types of sensors. Understanding fused situation requires detecting and

inferring events in each individual modality. While multimodal event signals

could come from all kinds of media sources, this thesis focuses on the physical

and social sensors with respect to the works of event detection.

1.1.2 Event Detection Using Physical Sensors

Physical sensors are now embedded with increasingly powerful processing and

are able to communicate with each other through the Internet. They are

widely distributed and used for the task of event detection and situational

information collection and understanding in many areas such as phenology s-

tudy, surveillance scene and environment understanding [15,47]. For example,

a multi-tier network SensEye of heterogeneous cameras has been proposed to

overcome the disadvantage of single-tier networks in a surveillance application,

performing object detection, recognition and tracking tasks [63]. Distributed

smart cameras [22], which combine video sensing, processing, and communi-

cation on a single embedded platform, are also being widely used in camera

sensor networks to produce alerts if certain types of unusual behaviour [20]

or abnormal events [2] occur. In multimedia applications, event is an elemen-

tary concept and event-related models [117], as well as the concept of atomic

and compound events [12] are proposed in several works focusing on video

applications. The tasks of event detection include identifying and locating

specified spatio-temporal patterns, such as waving hands or picking up objects

in crowd [53], detecting unusual events [127], or analysing human action be-

haviours [2, 80]. Also, a number of works about image captioning [36, 52, 111]
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and video concept detection [18, 50], are trying to bridge the gap between

machine-oriented low-level features and human-friendly high-level semantics.

Moreover, with the sensor types becoming diverse and their sensing capability

increasing, fusing different modalities of sensor information has drawn large

attention in solving various multimedia problems [10].

1.1.3 Situation Understanding Using Social Sensors

Many online social network services are prevalent nowadays by which users

share personal opinions, disseminate breaking news and discuss trending top-

ics. The concept of “social sensor” was first introduced by the work of event

detection using Twitter for detecting and tracking earthquakes, typhoons or

traffic jams [98]. Twitter, as one of the most important social sensors, has at-

tracted a large number of works for event detection [24], topic discovery [42], as

well as content analysis [69]. A news processing system, TwitterStand [100],

has been built to capture and investigate latest breaking news. By analyz-

ing news related tweets, it automatically obtains breaking news and current

hot topics, filtering out noise that does not belong to the news domain. Social

streams with a specific set of keywords are monitored and classified into events

and non-events. Events in the work, however, are only recognized for specific

predefined keywords, which limits its usage for general automated event detec-

tion. Similarly, a framework constituted by event clustering, feature extraction

and classification steps has been proposed to distinguish real-world event and

non-event twitter messages [16]. [113] proposes a situation awareness algorith-

m to detect geo-spatial events in a given monitored geographic area, which

offers a detailed summary of events. However, the events detected are limited

to a small local area. An overall situation cannot be inferred due to the ge-

ographic limitation. Aggregating large-scale social information streams from

various locations into a unified platform allows users to understand evolving

7



Chapter 1. Introduction

situations in a holistic view. Twitris [102] captures spatio-temporal-thematic

properties in processing large scale social data, and integrates semantic context

from multiple web resources, which facilitates social sensing in a broad variety

of application domains. To understand various events, [105] takes social me-

dia data which express social interest of users as “social pixels” and spatially

aggregates them into “Emage”, an event data based analogy of image. All

these works look into situation awareness from different perspectives. A more

comprehensive literature survey on social sensors in situation understanding

is given in Chapter 2.

1.1.4 Multimodal Sensor Fusion

Multimodal fusion refers to the integration of multiple media, their associ-

ated features, or the intermediate decisions in order to perform an analysis

task [10], such as semantic concept detection, audio-visual speaker detection

or human tracking. It has been well studied in combining different modalities

of same sources or from synchronized multiple physical sensors. Examples in-

clude a framework of heterogeneous cameras for object detection, recognition

and tracking [63], multi-level audio-video integration of camera networks and

microphone arrays for semantic event processing [110], mixture of text and

video analysis for video retrieval [123], or fusing cameras with depth sensors

for person re-identification [83]. While traditional multimodal fusion mainly

focuses on physical sensors information, with the emergence of social platfor-

m, social information is combined with physical sensors to provide conceptual

details or semantic meanings of detected events and situations. For example,

EventNet [125] utilizes tag keywords, meta-data and surrounding text of a

YouTube video to automatically learn a large set of event-specific concepts

for procedural and social events. Lanagan et al. [67] combine the tweet infor-

mation with sports video shot boundaries to detect events such as goals and

8



Chapter 1. Introduction

penalties. In the crowd sensing area, geo-social media is used to combine with

mobile data [120] and GPS data [87] to analyze human mobility. We also pro-

posed a Tweeting Camera Framework [115] integrating both physical sensors

and social sensors to detect various concepts of real-world events, which will

be elaborated in Chapter 3.

1.2 Motivation and Research Problems

Streams of data from multiple modalities provide complementary information

to each other in facilitating event discovery and situation awareness. However,

due to the diversity of these sources, physical sensors and social sensors capture

information separately in their individual silos. The information captured by

sensors of different modalities is not combined or fused which impedes event

detection and understanding in a comprehensive manner. Different properties

of these two types of sensors make the fusion of heterogeneous information a

challenging problem:

• Multiple modalities:

Different modalities may produce signals with different formats and prop-

erties: physical sensors (e.g., CCTV cameras or a temperature sensor)

may produce sensed numeric data (e.g., geo-coordinates, pixels, tempo-

ral sound waves), while social sensors are often in rich of text. Although

several works try to bridge them [87] by shared proximities (e.g., similar

locations and time durations), fusing these two different modalities in a

unified model is a hard problem due to their heterogeneous representa-

tion and different levels of information.

• Multiple sources:

Even if they are of different modalities, signals from the same source

are explicitly correlated (for example the frame and the audio signal
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at a specific time point). Fusing signals from different sources is more

challenging because the correlation between physical and social sensors

could be weak since humans do not necessarily post about what physical

sensors capture.

• Different spatio-temporal density:

From the spatial aspect, due to their cost, physical sensors are usual-

ly distributed sparsely in a region, while humans have no limitations in

choosing where they want to post a message, and the user generated con-

tent is usually spatially denser than the physical sensors especially when

some large-scale events are going on. From temporal aspect, physical

sensors have advantages because they are designed to sense the environ-

ment continuously. In contrast, this is not applicable to social sensors by

the nature of humans beings; most people only “tweet” spontaneously.

• Approximate sensing:

Physical sensors often produce noisy observations for a number of reasons

such as the failure of sensors, environmental changes or the maintenance

of devices, making it more difficult to rely on the readings and exploit

the correlation between the two different modalities.

These problems raise several research questions we need to solve:

1. How to integrate heterogeneous data from both physical sensors and

social sensors to detect real-world events?

2. What kind of processing framework should be adopted in order to extract

meaningful situational information from multi-modal media streams?

3. Given the intrinsic unreliability of individual sensor data and the sheer

volume of social media data, how can we handle the uncertainty and

noise of these data?

10
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4. How to utilize multimodal complementary information from multiple

sensors distributed in a large place to suppress the sensing noise for

situation understanding?

5. What kinds of fusion strategies should be adopted to make appropriate

use of properties and characteristics of such multimodal spatio-temporal-

semantic data?

This thesis aims at solving these questions by proposing a framework and

two methods that integrate and fuse physical and social sensors information

in a unified data structure and representation.

1.3 Scope and Contributions

1.3.1 Aims

This thesis’ objective is to provide novel multimodal sensor fusion framework

and methods which can:

1. obtain appropriate information from physical sensor networks;

2. utilize social information to enhance event understanding;

3. fuse information from both physical sensors and social sensors for event

detection and situation prediction.

1.3.2 Contributions

This thesis contributes towards the problem of physical and social sensor fusion

for situation awareness and event detection. The main contributions are as

follows:

• A multilayer tweeting cameras framework We design a multilay-

er tweeting cameras framework that integrates physical sensors (CCTV

11
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cameras) with social information (Twitter Tweets). It automatically de-

tects and broadcasts high-level semantics, which are more intelligible for

humans. The framework reduces network traffic because high-bandwidth

videos are not broadcast, but only short semantic compressions. The pro-

posed unified probabilistic spatio-temporal data structure can handle the

uncertainty of physical sensors and the aggregation of physical and social

sensors addresses the unreliability issue of individual sensors and thus

improves the overall performance of event detection. In addition, the

proposed novel tweeting camera paradigm enables event learning and no-

tifying, which complements the classic streaming-based approach. This

paradigm not only protects the privacy of the detected objects by gen-

erating only semantic information but also facilitates architecture that

allows the sensing process to be customized for different applications or

particular purposes with humans in the loop.

• A Concept image based hybrid multimodal fusion method We

propose a concept image (namely Cmage) based hybrid fusion method

featuring sensor decision and spatial information; Spatial sparsity issue

due to physical sensors distribution is solved with embedded Gaussian

Process and heterogeneity problem is addressed with a Bayesian fusion

method to combine event decisions from both physical and social sensor

Cmages. Our proposed fusion method provides not only a better visu-

alization of event summary but also the convenience of manipulation of

the event-related sensor and social signals. The fusion strategy can ef-

fectively remove noise from the data streams, accurately locate the event

place and offer more detailed situational semantics.

• A matrix factorization based fusion method We introduce an in-

novative way of fusing social and physical sensors by taking account

of numerical readings and semantic text simultaneously. Our proposed

12
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matrix factorization based fusion model opens the possibility of fusing

spatio-temporal numeric and semantic data for various tasks, by utilizing

the correlation between physical and social sensors. This fusion method

applied on two different large real-world datasets suggests how the social

sensor can contribute to event analysis tasks in the fusion process. It

results in higher performance in event classification and prediction and

is generalizable to spatio-temporal data fusion tasks.

1.3.3 Significance

This work contributes to the fusion of physical and social sensor by applying

statistical models and mathematical based fusion techniques (Bayesian fusion,

Gaussian Process and Matrix Factorization) and utilizing the correlation be-

tween these two types of sensor modalities. The study will have significant

impact on multimodal sensor fusion since 1) it can demonstrate the feasibility

of framework and methods that fuse both physical and social sensors; 2) it

will provide the mechanism of smart socialized sensors network; 3) it could

facilitate people’s response to the emergency by providing situation oriented

information, which humans can refer to for proper action takings.

1.3.4 Scope

The work is limited to physical sensors and social sensors that can both observe

same physical event or situation. This implies that analyzing the trending

topics captured by the social sensor but not seen from physical sensors, or

detecting physical events that contain no social feeds are beyond the scope of

this thesis. In addition, distribution of sensors for better coverage of situation

is another research question beyond our scope.

13



Chapter 1. Introduction

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 surveys a breadth of situation

awareness using physical sensors and social sensors as well as multimodal fusion

techniques. Chapter 3 presents a tweeting camera framework which combines

CCTV camera feeds with social information and a new paradigm of tweeting

camera network. Chapter 4 discusses a hybrid fusion method on top of a u-

nified Cmage-based representation. Chapter 5 presents a matrix factorization

based method of fusing physical sensors and social sensors for situation pre-

diction and event detection enhancement. Chapter 6 concludes the thesis with

suggested future work.
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Related Works

This chapter presents a survey of research works related to multimodal sensor

fusion for situation awareness. The survey mainly focuses on event detection

using physical sensors and social sensors. We first briefly review physical sen-

sor fusion area, listing works related to event detection using physical sensors,

operators required in manipulating sensor streams, and the internet of things.

Secondly, we give a comprehensive survey on social sensors for situation aware-

ness, which mainly investigates how the fastest-growing microblogging service

Twitter is utilized to conduct event detection, breaking news as well as trend-

ing topic detection. In the last section, we review the works on the fusion of

heterogeneous information, which give different fusion techniques that handle

data from multiple sources, of different modalities and data representations.

2.1 Physical Sensors Fusion for Situation Under-

standing

With an increasing number of sensors having capabilities of sensing, processing,

communicating, usage of sensors in event detection and situation awareness

is spreading. Massively distributed visual sensors (webcams) are being uti-

15



Chapter 2. Related Works

lized for phenology study, scene and environment understanding [15,47]. Data

from these ambient sensors are being fused and analyzed to detect real-world

occurring events and evolving situations

2.1.1 Event Detection using Physical Sensors

Kulkarni et al. [63] proposed a multi-tier network SensEye of heterogeneous

cameras to overcome the disadvantage of single-tier networks in a surveillance

application, performing object detection, recognition and tracking tasks. The

network consists of 3 tiers, each of which contains homogeneous sensors while

they are heterogeneous between tiers. Fusion of different sensors is likely to

achieve less energy consumption. One of the multi-sensor fusion problems

is to select a proper model from correlated sensor data streams. Different

sources give different confidences in detecting events. Atrey et al. [12] p-

resented a novel framework that finds the optimal subset of media streams

in order to achieve the system goal under specified constraints. A dynamic

programming approach is used to find the optimal subset of media streams

based on three different criteria regarding 1) probability of achieving the goal,

2) confidence in the achieved goal and 3) cost to achieve the goal. Event

detection in surveillance scenario (including events such as running/walking,

knocking/talking/shouting) with two cameras and microphones demonstrates

the feasibility of model selection strategies.

In the machine perception area, human activities and interactions will be

effectively and efficiently supported because of embedded multimodal sensory

systems and databases of semantic events. Trivedi et al. [110] developed a

multimodal system which integrates different modalities. The sensory infor-

mation of this system comes from camera networks and microphone arrays.

The camera networks include 4 omnidirectional cameras, four rectilinear cam-

eras, and the arrays include 12 microphones. The system contains a semantic
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event database which can retrieve activities at high levels of semantic gran-

ularities. However, the system is not generally designed and limited to the

special structure of an intelligent room.

Events are an elementary concept not only for the human brain but also in

multimedia applications. Different multimedia applications such as eChroni-

cles, life logs, and event-centric media management, content analysis, surveil-

lance all have different event definitions and processing mechanisms, sharing

a various established notion and model of events. Therefore, a common mul-

timedia event model such as [117] is required to offer unified base representa-

tion, media indexing, common event management infrastructure, exploration

and visualization. In addition, unusual event detection has also drawn much

attention. Examples include a framework that consists of unsupervised clus-

tering and the Coupled Hidden Markov Model [127], a method that extracts

and processes low-level observations from local “monitors” [2] and a system

that involves detection, tracking and behaviour analysis in airborne moving

platform [80]. To bridge the gap between machine-oriented low-level features

and human-friendly high-level semantics, a number of works concern image

captioning [36, 52, 111] and video concept detection [18, 50], where the task

is to assign concept labels to an input image/video along with their associ-

ated probabilities. Moreover, multi-modal sensor fusion has been well stud-

ied for combining multiple physical sensor modalities for various multimedia

tasks [10].

2.1.2 Streaming Data Operators

To manipulate sensor data for event detection, a proper set of operators

should be well defined to query for different situations. A lot of work has

been done towards efficiently processing query streams of relational data.

A various number of systems have been proposed that support an SQL-like
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query language for querying relational data streams: TelegraphCQ [25], Auro-

ra/StreamSQL [1,48], CQL/Logical Stream Algebra [60], and similar system-

s. Other works focus on the fundamentals of query processing by extending

or adopting the notions of the Relational Algebra to new required concepts.

For example, [79] describes temporal algebras to address the time aspect of

the stored data. However, these works do not consider streaming data, i.e.,

queries are processed against the currently available data. Existing stream

processing systems as mentioned above map the SQL-like query languages or

stream-specific extensions of SQL to an algebraic level. This typically involves,

adopting the definitions of existing operators to the streaming paradigm as well

as the definition of new operators to accommodate processing tasks not being

handled by existing operators. [41] proposes an algebra that takes both the

temporal and streaming characteristics of the data into consideration.

2.1.3 Smart Cameras and Internet of Things

Today’s smart camera systems are usually designed with larger memory, con-

siderable computing power, and wired or wireless communication interfaces.

A number of smart cameras with onboard image processing and analysis ca-

pabilities have been built to accomplish visual analysis oriented tasks such

as object detection and classification, event detection and situation aware-

ness [95,103]. Some of the pervasive smart camera prototypes are implement-

ed based on standard, off-the-shelf components [101]. However, most of the

smart camera-related works focus on the research issues such as the architec-

ture of smart devices and networks [30], privacy protection in visual sensor

networks [97, 119], or visual processing [3]. Rather than letting cameras work

passively, we consider taking a camera node as an active sensor participating

in a social-cyber-physical world, which establishes a connection with humans

and offers useful real world situation information to people.
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With the Internet of things (IoT), everyday objects now have the ability to

interconnect not only among themselves but also humans. Social networking

concepts have been integrated into IoT [13], which establishes Social Internet of

Things (SIoT). An architecture for SIoT has been presented in [14]. Things not

only sense but start to update their status on social networks. Kranz et al. [61]

make both humans and technical systems together to form a socio-technical

network by describing cognitive office, where the states of the plant, windows

and doors are posted via Twitter accounts. Many accounts of similar function

have been created. For example, @VedamsIoTEdison tells if room lights are

off or on; @VedamsIoTRPi tweets when there was a power cut in office hours;

@MoneyPlantTrack not only posts a plant’s temperature, humidity, status but

also uploads images captured by the camera that is monitoring the plant.

2.1.4 Video Concept Detection

Another stream of research on event detection is the semantic analysis of

events, including detecting concepts from videos streams. The aim of video

concept detection is to rank video shots according to the presence of semantic

concepts (e.g., “sports”, “crowd”,“people marching”, etc.), which can act as

semantic filters for different multimedia applications.

There are many works on concept detection, including Columbia374 [124],

VIREO-374 [50], CU-VIREO374 [49], NUS-WIDE [27], EventNet [125] and

Mediamill-101 [106]. Table 2.1 summarizes the works on concept detection

based on the number of concepts, classifiers, and the concept examples.

These works release different set of concept detectors trained using various

features (colour moment, texture, bag-of-works feature points, etc.) or various

fusing techniques (late decision fusion or early feature fusion) and can be

directly used for various multimedia applications.

Concept detectors learn from training samples, the mapping between a set
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of low-level visual features (local descriptors, color, texture, etc.) to a concept

with particular semantic (e.g., parade, crowded, face, etc.), but usually achieve

low detection accuracy due to the so-called semantic gap between the image

features and the conveyed meanings perceived by a human being. Many work-

s [35, 86] have been devoted to improving the detection accuracy and adding

more classifiers. To explore dynamic spatiotemporal correlations among prim-

itive concepts, Bhatt et al. [18] proposed utilizing dynamic spatiotemporal

correlations of the given ontology rules; based on the accuracy of detection of

concepts, these ontology rules could be updated. The method considers a new

paradigm of mutual learning between multimedia data mining and ontology

to define and discover Adaptive Ontology Rules (AOR), which can adapt to

dynamic correlations, primitive concept detection inaccuracy and uncertainty

in spatiotemporal relations.

2.2 Social Sensors for Event Detection

Online social media platforms (e.g., Facebook, Twitter, Weibo, Youtube, Y-

ouku and etc.) have revolutionized our way of communicating with each other.

Social media embedding higher-level comprehension patterns and forecast op-

erators have demonstrated the ability to enhance situation awareness [126].

Previously these social network services focus mainly on establishing connec-

tions amongst people and helping them share information in their network-

s [31]. Nowadays, due to the blossoming of all kinds of microblogging and

media sharing services, people use them to report daily news/events [6,64,70,

71, 94, 98, 113, 116], disseminate breaking news [46, 66, 100], discuss trending

topics [5, 17, 68, 76, 128] or express feelings/opinions [4, 59, 89, 96, 114]. This

results in a huge volume of user-generated content (UGC) that has drawn

significant attention from researchers.
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2.2.1 Event Detection Using Twitter

Twitter as one of the fastest-growing microblogging services has become a

mature tool for real-time event detection and situation monitoring. A well-

known example is to use it to detect and track earthquakes, typhoons or traffic

jams in Japan using Twitter streams [98]. In this work, Twitter users are

considered as “social sensors” that sense the situation of surroundings and give

the measurement in terms of tweets. To detect specific events (e.g., earthquake,

typhoons), a classifier is devised to classify if the tweets are event or non-event

related, based on tweets features including target events keywords, the number

of words and their contexts.

In addition, Kalman filtering and particle filtering are applied to estimate

events location and to trace how situations evolve across space and time. An

earthquake reporting system is then designed to promptly detect an earth-

quake by monitoring the tweets. Due to the rapidity and ambiance proper-

ties of the tweets related to the earthquake, the system is able to detect an

earthquake with high accuracy and deliver notifications even faster than the

announcements broadcasted by the meteorological agency.

Focusing on crime and disaster related events (CDE) (e.g., shootings, car

accidents, tornado), Li et al. proposed [71] a Twitter-based Event Detec-

tion and Analysis System (TEDAS) which not only detects and analyses new

events’ spatial and temporal patterns, but also identifies the importance of the

detected events. The system contains components of crawling, Twitter-specific

and CDE-specific features based classification, importance ranking, location

extraction as well as a map visualization, and allows a user to interact with

it by specifying spatial, temporal or topic queries. However, the system relies

heavily on manually predefined CDE terms, and not able to detect events in

real-time.

Predefining rules or selecting keywords/hashtags as done in the works
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above limits the generality of event detection. Many works, therefore, try to

detect events using unsupervised or semi-supervised methods. For example,

Becker et al. [16] used online clustering techniques to group together tweets

that are similar in topics. Features are extracted in cluster level including tem-

poral (volume of frequent cluster terms), social (retweets, mentions, replies),

topical, and Twitter-centric (hashtags) features, and a classifier is trained with

the cluster based feature using support vector machines. Walther et al. [113]

proposed first clustering spatially and temporally similar tweets together and

then classifying the results into event or non-event clusters by decision tree

based classifier trained on manually labelled clusters. A bunch of cluster level

features (e.g., common theme, tweets counts, present tense, etc.) are defined

to differentiate positive and negative samples. The system supports real-time

processing of tweets and provides GUI showing where the events are hap-

pening. However, the detection focuses only on a relatively small geographic

region which should be pre-specified.

To detect emerging events in a fully automatic framework, Weng et al. [116]

tackled event detection with clustering of wavelet-based signals (EDCoW).

In order to filter out meaningless “babbles” in twitter streams, this method

builds signals for individual words which can be quickly computed by applying

wavelet analysis on the frequency of the words. After trivial words with low

auto-correlation in terms of similarity being filtered out, the remaining words

are then clustered to form events with a modularity-based graph partitioning

technique. However, since the semantics of words are not explored, words

associated with different real-life events are potential to be grouped togeth-

er. Similarly, Li et al. proposed [70] a segment-based event detection system

for tweets, Twevent, which detects bursty tweet segments that are then clus-

tered as event candidates. Different from previous work that relies solely on

Twitter data, the system integrates Wikipedia to identify the realistic events

and provides the description of the identified events. Also based on clustering
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method, Kumar et al. [64] proposed an emergency event detection framework

to handle the informal nature, the high volume, and high-velocity character-

istics of Twitter text streams. The inclusion of a temporal model improves

the efficiency of event detection and supports identifying sub-events within a

larger event.

Apart from public events, wellness information posted in many social plat-

forms is also utilized to detect and analyze personal wellness events [40, 92].

For example, Akbari et al. [6] presented a novel supervised model to cate-

gorize tweets into different wellness event taxonomies including three main

events diet, exercise, health and other sub-events. In addition, relations be-

tween event categories are also analyzed to learn task-specific and task-shared

features. Reis et al. [92] used user tweets to estimate the effect of exercise

on mental health. The volume of a users’ tweets expressing anxiety, depres-

sion, and anger is estimated and compared to two group of people to mine the

relationship between mental health and physical exercise.

To sum up, Twitter provides greatly valuable user-generated content that

can be transformed into actionable situational knowledge. A large number

of works have been conducted using tweets to detect events. Different works

tackle a variety of tasks and detect different types of events including general

events, crisis or emergency events, personal heath events, etc. Also, a variety

of features are extracted from the text and different classifiers are used to

detect events.

2.2.2 Breaking News and Trending Topic Detection

If the spatial information is ignored, event detection is technically similar to

another two areas in social media analysis: news detection and trending topic

detection. The difference is that breaking news are not necessarily events

occurring in our physical world, but simply featuring bursty occurrence of
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some particular topics.

Teitler et al. built a news processing system, TwitterStand [100], to capture

and investigate latest breaking news from Twitter feeds. By analyzing news

related tweets, the system can automatically obtain breaking news and current

hot topics, filtering out noise that does not belong to the news domain via

online clustering. In contrast to traditional news wire services, sources of the

system come from many identities of the contributors/reporters who are not

known in advance.

Kwak et al. [66] conducted the first quantitative study on the entire Twit-

tersphere and explored how trending information is diffused in Twitter. Trend-

ing topics were classified into exogenous and endogenous categories, indicating

breaking news or self-reporting. User participation and active period of trend-

ing topics are also investigated. Compared with trends in other media, the

work shows that the majority (over 85%) of topics are headline news or news

persistent in nature. Further supporting the statement, Twitter has been

proven as the first source to the breaking news and has convinced a large

number of its audience before mainstream media reported the news [46]. Hu

et al. [46] provided an in-depth analysis of how the news broke and spread on

Twitter and discovered that individuals affiliated with media played, mass me-

dia and celebrities are the main groups of people that play the key role in news

diffusion. In this work, bag-of-words are extracted from tweets to be classified

via SVM into “certain”, “uncertain” or “irrelevant” categories describing the

reliability of a given tweet.

In the textual data mining area, emerging trends is a topic area that is

growing in interest and utility over time [56]. With the prevalence of social

media platform, an enormous number of research works focus on detecting

topics that were previously unseen or rapidly growing in importance online.

For example, TwitterMonitor [76] is the first system that performs trend de-

tection over the Twitter stream in real time. A trend is identified as a set
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of bursty keywords that suddenly appear in tweets at an unusually high rate

and occur frequently together. Besides trend identification, the system ex-

tracts frequently mentioned entities to discover multiple aspects of the trend.

The trending order is potentially adjustable through user interaction with the

system via GUI.

To understand what detected trending topics are about, Lee et al. [68] clas-

sified these topics into 18 general categories such as sports, politics, technology,

etc. Naive Bayes multinomial classifier with bag-of-words and tf-idf weights

were used to classify the tweets. A decision tree was used to categorize similar

topics by the number of common influential users between the given topic and

its similar topics. Similarly, Zubiaga et al. [128] introduced a topology to clas-

sify trending topics into four general categories: news, current events, memes,

and commemoratives. A set of predefined language-independent features such

as bag-of-words, retweet, hashtags and etc, were used to discriminate trending

topics via an SVM-based classifier.

Benhardus et al. [17] defined trending topic as “a word or phrase that is

experiencing an increase in usage, both in relation to its long-term usage and

in relation to the usage of other words.” In this work, standard features such

as tf-idf, unigrams, bigrams, and etc. were used in detecting and identifying

trending topics in Twitter streams. The trending topic identification results

demonstrated the ability and feasibility to extract and identify relevant infor-

mation from a continuously changing corpus with an unconventional structure.

To summarize information originating from social sources, Aiello et al. [5] con-

ducted a comprehensive comparison of six topic detection methods on three

datasets related to large scale events or topics including the FA Cup and US

elections. The work found that the volume of activity over time, the sampling

procedure and the pre-processing of the data, as well as the type of used de-

tection method (e.g., LDA, FPM, BNgram and SFPM) all greatly, affect the

quality of detected topics.

26



Chapter 2. Related Works

In summary, Twitter, as one of the most popular microblogging services,

provides rich content for situation awareness including detecting and diffusing

events, breaking news and trending topics. Those events detection methods

are sometimes similar to the approaches to breaking news or trending topic

detections. Events are normally detected by classification or clustering tech-

niques with all kinds of features of different levels. A more comprehensive

review of techniques in finding real-world occurrences of events that unfold

over space and time could be found in [9]. Table 2.2 summarizes the above-

mentioned works in terms of different properties including main features ex-

tracted from the data, the classifier in the tasks, learning methods, event type,

spatio-temporal as well as categories.

2.3 Fusing Heterogeneous Information

Real world phenomena are now being observed by multiple complementary sen-

sors streams. Deriving actionable insights of evolving situation, therefore, re-

quires fusing heterogeneous information in terms of data characteristics. Such

heterogeneity is reflected by data from different sources, of different modal-

ities, distributed in different locations and having different reliabilities. For

example, sensors reading streams usually give data in the numeric form (such

as image pixels, humidity values, pm2.5 readings, sound waves, etc.), while so-

cial feeds streams contain mainly symbolic text (such as tags in Flickr, posts

in Twitter or Facebook). In recent years, more and more research works in the

multimedia area are trying to fuse these heterogeneous data with various in-

formation fusion techniques or frameworks, generating more holistic or global

view of ongoing situations.
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2.3.1 Multi-source Fusion

To understand various events, patterns and emerging situation, Singh et al. [105]

designed abstraction and tools to analyze spatio-temporal patterns of a situ-

ation using social media data. Taking humans as sensors, the work aggre-

gates social media data which express social interest of users about a partic-

ular theme from any particular location into “social pixels”, a unified spatio-

temporal-thematic data structure. The social pixels were combined spatially

to form E-mage, an event data based analogy of image, for situation visualiza-

tion. Besides, a declarative set of operators and media processing operations

upon such data structure were defined to analyze aspects of the situation in-

cluding important parameters, the patterns of the situation, or macro events

that were relevant to the application domain. Based on the E-mage repre-

sentation, a system named EventShop [37] was built to combine streams from

heterogeneous data sources, to process them to detect situations. Such spatio-

temporal-thematic data structure was also proposed by Sheth et al. and used

in the system Twitris [84,102] which captured spatio-temporal-thematic prop-

erties in processing large scale twitter data, and integrated semantic context

from multiple web resources, facilitating social sensing in a broad variety of

application domains. The system comes with a web mashup application that

is able to explore social signals by tracking particular events and providing

event related popular topics with semantics.

Mining multimodal geo-social media data from different social media plat-

form, Hsieh et al. [44] developed a joint inference and visualization system

that integrated multimodal features that were able to reason and present ur-

ban noise pollution. The data come from New York City related to noise from

social reports or posts. A GUI was provided to allowed users to understand the

noise composition in a particular region. New Your City has the huge amount

of all kinds of social or sensor data and is full of diverse activities. Kuo et
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al. [65] explored various perspectives of the dynamic of the city from rich and

diverse social media content including Instagram, Flickr, TripAdvisor, Twitter

and open data). Specifically, a broad spectrum of life aspects including trends,

events, food, wearing and transportation were analyzed through multi-source

and multi-modality data. Activities in New York City across social media in

both visual and semantic perceptions were discovered and a number of inter-

esting applications revealing patterns related to urban dynamics (e.g., traffic

pattern, sentiment, human activities and fashion styles) of NYC were also

demonstrated.

2.3.2 Multi-modality Fusion

Thanks to the fast-growing online social networking servings and the prolif-

eration of user-generated content, social information has been demonstrated

contributive to the tasks used to be accomplished by physical sensors. In-

corporating social feeds with semantics facilitates a better understanding of

events or ongoing situations. EventNet [125] utilizes tag keywords, meta-data

and surrounding text of a YouTube video to automatically learn a large set

of event-specific concepts for a procedural event and social event. The work

provides a large-scale structural event ontology from social tags for the video

captured by physical sensor cameras, which offers great potential for unseen

event retrieval and browsing. Similarly, tags of Flickr images are used to train

event-driven concepts [26] for various event detection tasks. Lanagan et al. [67]

combined the tweet information with sports video shot boundaries to detect

events such as goals and penalties. The volume of tweets during the game were

shown to be an effective and accurate mean of event detection, and meanwhile,

the discussed content offered the semantic sense of what people were talking

about at event moments. However, the method is only applicable to specific

events due to predefined features, selectively filtered keywords and hashtags,
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which limits the generalization of event detection.

The works mentioned above only look at semantic concepts or temporal

patterns evolution, yet spatial information as a critical aspect revealing geo-

locations of events or situations is not considered. Due to the proliferation

of geo-enabled smartphones and GPS sensors, geographical locations recorded

in the form of latitude and longitude are becoming basic meta-data for newly

user generated content. In crowd sensing area, geo-social media is used to

combine with mobile data [120] and GPS data [87] to analyze human mobili-

ty. Specifically, [120] combines mobility data and geographically surrounding

tweets together to understand semantically why and where a person travels to

in particular time. In [87], GPS trajectories of vehicles and geo-tagged tweets

from microblogging service Weibo are also combined to identify traffic anoma-

lies. When there are significantly different traffic patterns being discovered,

social media is leveraged to annotate the unusual pattern. Besides human

mobility analysis, geo-tagged social information is also used to combine with

traffic cameras for event detection. However, the methods in these works can

not handle the noise in the data and do not provide a unified model to fuse

physical and social sensors. They could only be considered as shallow inte-

gration, in the sense that they focus on obtaining the semantic explanation

of physical sensors and there is no unified method that simultaneously takes

these two sources of information into account, which is what we propose in

this thesis. The data heterogeneity of different sources in our problem is re-

flected by the numerical data representation from physical sensor readings and

the semantic text representation from social sensor feeds. In the multimedia

event detection area, this problem has never been considered. However, the

fusion of such heterogeneous data is extensively studied in recommendation

systems area [57], where multiple aspects of user and items (e.g., movies, mu-

sic, products) are combined to find the patterns of users interest in products

for a personalized recommendation. In the recommendation system works, a
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set of users give ratings to different items and this is formalized in a rating ma-

trix where rows and columns represent different users and items respectively

and the value of each cell represents the rating given by a user to a corre-

sponding item. Matrix factorization [99] as a collaborative filtering algorithm

is a common way of discovering the latent associations between the user and

matching items. The advantages of matrix factorization is that besides the

raw ratings, it allows incorporating additional information such as user social

relations [109], reviews [77] independently [73] or simultaneously [45]. Such

additional information (e.g., item reviews, implicit feedbacks), in terms of da-

ta format, is in line with social sensor content in our problem. This gives a

hint of using matrix factorization as a alternative and complementary method

to the fusion of multi-modal data, especially physical sensor and social sensor

data.

2.3.3 Summary

Various methods of fusing heterogeneous data from physical sensors to social

sensors are presented in this section. A summarization and comparison of

these works in terms of different situation aspects and source properties is

provided in Table 2.3. Although situation awareness applications have been

investigated extensively with either physical sensors or with social sensors,

to the best our knowledge there is no previous work that analyses these two

modalities simultaneously in a unified framework that takes into account all

situational aspects including spatial, temporal and semantic information, and

meanwhile considers multiple independent sources with noise, which are the

main goal of this thesis.
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Chapter 3

Tweeting Cameras for Event

Detection

3.1 Overview

Thanks to the widely distributed visual sensors (e.g., surveillance cameras)

and the prevalence of social sensors (e.g., Twitter feeds), many events are

implicitly captured in real-time by these sensors of heterogeneity. However,

due to the diversity of these sources, physical sensors and social sensors capture

information separately in their individual silos. Since the camera and social

streams provide different facets of events or a situation, the accuracy of event

detection and evolving situations comprehension can be significantly improved

if these two complementary sensor streams are fused together for evaluation

or analysis. In addition, sensors are not passively observing environment but

starting to report surrounding situation if it goes abnormal [29, 62]. Many

works propose future IoT architectures that integrate physical sensors and

make them perform a social behavior when they are connected [14].

In this chapter, we present an innovative multi-layer tweeting cameras

framework to combine physical and social sensor data; we also implement a
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Chapter 3. Tweeting Cameras for Event Detection

new tweeting camera paradigm that connects cameras with a human to facili-

tate event detection and enhance situation understanding. In order to process

social data and sensor data, we define a unified probabilistic spatio-temporal

(PST) data structure to represent semantic concepts information, which aids

handling the uncertainty and noise in sensor and social streams respectively.

We apply concept detectors on the images captured by cameras to indicate the

confidence of a detected concept from the image. We consider these detect-

ed concepts as “Camera Tweets” with associated confidence values indicating

the probability of happening event containing such concepts. Camera tweets

(CamTweets) at a particular geo-location can then be visualized as “concept

pixels” since they represent concept signals emerging from a particular geo-

location if we consider a broad region (having distributed signals of different

strength) as a situation image [105]. Spatially aggregating such “concept pix-

els” creates a powerful and intuitive situation visualization interface, concept-

based image (Cmage), which enable fusing both social information and sensor

information in an image-based representation (discussed in Chapter 4). To

achieve this goal, we propose a multi-layer tweeting camera framework where

tweets from cameras are analyzed at different levels such that multi-level in-

formation is extracted and subsequently combined with social information to

derive situational knowledge.

Images or videos from visual sensors (e.g., CCTV cameras) are important

information sources for all kinds of monitoring, surveillance, and observation

tasks and serve as the biggest contributor to the phenomenon of Big Data.

The handling and processing of such data typically require a good number of

hardware resources. To complement the idea of tweeting camera, we design

and implement a real smart camera that can sense, analyze, “tweet” and learn.

Like smart cameras, we pre-process the data to avoid sending the raw camera

feed and to significantly increase the level of privacy. We introduce an archi-

tecture that can easily be customized for different needs and applications. The
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Chapter 3. Tweeting Cameras for Event Detection

proposed smart camera uses individually trained classifiers for the detection of

a set of events such as “lights on/off” and “meeting in progress yes/no”. As a

result, we can transform low-level visual data into a high level of information

on the camera itself which can be viewed as a form of “semantic compression”.

The level of information allows for sharing camera data in a new way. By fol-

lowing a camera over Twitter, not only humans but also systems can subscribe

to camera output for further analysis. Moreover, by replying the “Camtweet”

of a tweeting camera, a human can rectify or confirm the information posted

by the camera and the camera will automatically update its knowledge by

re-adjusting its learning model.

The rest of this chapter is organized as follows. Section 3.2 introduces our

proposed multilayer tweeting camera framework that combines sensor readings

with social information. Section 3.3 describes the detail of the data processing

procedure in the framework. Section 3.4 illustrates our proposed new paradigm

of socialized smart camera as an implementation of proposed framework. Sec-

tion 3.5 demonstrates the feasibility of our work using three different datasets

(New York real-time traffic camera feeds, NUS foodcourts’ camera feeds and

Twitter data from New York City), conducts evaluation experiments with four

instances of real-world events as well as a face recognition application and dis-

cusses issues related to our work. Section 3.6 concludes the chapter.

3.2 Multi-layer Tweeting Camera Framework

We propose a multi-layer tweeting cameras framework as shown in Figure 3.1.

The framework consists of three layers, namely low-level concept detection lay-

er, mid-level concept filtering layer, and high-level social sensor fusion layer. In

the first layer, low-level concepts are detected from raw sensor images through

applying various concept detectors. A unified probabilistic spatio-temporal

(PST) data structure represents the low-level concepts. Those camera “tweet-
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Figure 3.1: Overview of Proposed Multi-layer Tweeting Cameras Framework.

s” of low-level concepts are then aggregated and processed at the second layer

using a set of predefined operators and functions. Signal detection theory is

applied to detect abnormal patterns indicating occurring events. In the third

layer, social information and the processed camera tweets are fused to de-

rive high-level semantics. It provides an effective data processing pipeline to

convert the raw media streams (either live camera feeds or real-time tweets)

to different abstraction levels and finally facilitates event detection. By ag-

gregating multiple individual sensor feeds via a common representation, the

framework provides a visualization interface as well as information filtering

tools based on a set of predefined analytic functions customized for PST data

processing. This enables a user to be able to gain a global understanding of

occurring events by manipulating the sensor feeds. In the following, we de-

tail how (where, when, what) camera tweets are analyzed and combined with

social media data in this framework.
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3.2.1 Data Collector and Storage

The data collector component is required for pulling in raw data, by which we

crawl raw sensor data (e.g., image sequences from surveillance cameras), and

obtain social media (e.g., tweets from Twitter) using their respective APIs.

After obtaining the data, we use MongoDB to store the crawled images and

tweets from Twitter. In addition, low-level concept information represented

by the unified data structure (defined in Section 3.3.1) is also stored in the

database for querying and further analysis.

3.2.2 Low-level Concept Detection

To bridge the gap between low-level features and human interpretable mean-

ing, a wide variety of detectors have been created in many works to extract

semantic information from images or videos. Concept detectors [39,50], object

detectors [38], face detectors [112] are examples of these advances. In the first

layer, we incorporate a set of concept detectors to detect a variety of concept-

s from the camera feeds. Here the concepts could be faces, objects, actions

or general entities with semantic meanings. These concept detectors, which

are essentially statistical models or classifiers, assign text labels (tags) to the

sensed data. Specifically, we adopt the VIREO-374 detectors [50] which can de-

tect 374 general concepts defined in LSCOM [54] including “parade”, “crowd”,

“traffic”, “people marching” etc. These detectors, with a mean average pre-

cision of 16%, are not yet capable of providing accurate performance and are

associated with uncertainty. The uncertainty is represented as a probabilis-

tic confidence score indicating the probability that an observation is correctly

classified into the concept category. If concept detectors are periodically (e.g

once every 10 seconds) applied to the camera data, we can consider the camera

to be tweeting these labels and a set of cameras in a geographic region can be

considered to be a network of tweeting cameras.
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In addition, spatial and temporal aspects have been found to be critical for

describing a situation or event [117]. Therefore, this layer models the outputs

of concept detectors (camera tweets) in a unified data representation called

probabilistic spatio-temporal data (PST data), which contains four elements,

including camera location information, temporal information, the label of the

detected concept and the associated probability as the confidence value of the

label. We consider the confidence of detecting a concept at any location to

be like the intensity of pixels in an image, and term it as a “Concept Pixel”.

Such “Concept Pixel” represents a basic concept of an event and is considered

as a small signal that provides a clue about the holistic situation. Therefore,

spatially aggregated data from a set of cameras can be construed to be an

image.

Moreover, tweets represented by the PST data serve as the input for higher

information filtering and are indexed in the repository (stored in MongoDB)

for querying and textual pattern mining. Therefore, cameras whose feeds are

analyzed in the framework are constantly tweeting low-level concepts in the

first layer and simultaneously pushing PST data into database for indexing.

3.2.3 Mid-level Concept Filtering

In this layer, PST data from each camera is aggregated for the holistic repre-

sentation. Specifically, “Concept Pixels” from a geographic region of interest

are visualized in a map-based form called the “Concept Image” (Cmage). Con-

cept filtering operators can then be applied on the Cmage to facilitate event

detection.

Filtering Operators and Analytic Functions: A set of pre-defined

filtering operators and analytic operators has been designed to analyze such

integrated information. For example, a user can use filtering operators to query

situational information about a specific concept from a particular location
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given specified time and probability threshold. In addition, we formally define

basic analytic functions for statistics, such as min, max, sum, count, smooth,

extremes, trend, abnormal, clustering and density function that can be applied

to the PST data as well as the Cmage. For example, a user can check the weak

signal trend of a particular concept, can obtain knowledge of when an event

occurs and which region has a higher confidence of detecting specific concepts

as well as how such concept confidence rises and falls with time.

Event Detection: Cameras in open environments do sensing under differ-

ent and often noisy ambient conditions. Therefore, PST data is usually noisy.

To overcome this problem, we use Signal Detection Theory [118] which mod-

els the detection task by checking objects/concepts being present or absent

with the threshold set by “observers”. It consists of two distributions, name-

ly “noise” distribution and “signal + noise” distribution. We model detector

results using Gaussian distributions where non-event results are considered as

“noise”, and event results are considered as “signals”. Given this, we define

event detection goal as separating the “signal” from “noise”.

3.2.4 High-level Social Sensor Fusion

At the third level of this framework, we integrate both sensor information and

social information so as to obtain a high-level semantic information of events

which can be used for decision making and action. In such cross-media analy-

sis, we try to leverage information from social media onto physical sensor data

and vice versa. For example, when the tweeting cameras sense an unusual

number of concepts from a specific location, we try to mine representative

terms from the social media like the geo-located messages posted on Twitter.

Tweets in the camera regions are collected and grouped into different clus-

ters based on message content (topic, keywords, hashtag, etc). We utilize the

location and time information obtained from physical sensors to filter out non-
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concept related posts to enhance the efficiency. We then calculate the most

dominant cluster (that contains most similar tweets) as the emerging topic in

that particular location and compare current frequent terms in tweets with

historical tweets to discover most discussed topics for the rising intensity of

particular concept detector results (details provided in Section 3.3.5). There-

fore, high-level knowledge is obtained in the form of social context (hot topics

and messages in tweets) combined with mid-level information from physical

sensors.

To summarize, in the proposed framework, camera tweets in the first lay-

er are represented as probabilistic spatio-temporal data coming from multiple

cameras, which describe low-level concepts and emit weak signals of events.

Mid-level information is obtained at the second layer by aggregating and pro-

cessing individual low-level tweets using various filtering operators and analytic

functions. High-level knowledge is derived by fusing both sensor information

and social sensors information for situation understanding.

3.3 Processing Framework

In this section, we elaborate on the probabilistic spatio-temporal data struc-

ture, the aggregation format Cmage, as well as the filtering operators and

analytic functions that can be applied on the data structure. We show how

signal detection theory is leveraged upon to detect abnormal events. In ad-

dition, we illustrate how physical sensors and social sensors are utilized to

complement each other for event detection. The notation we use throughout

this chapter is defined in Table 3.1
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Table 3.1: Tweeting Camera Framework Notation

Symbol Description
Di concept detector i
li semantic label extracted by concept detector i
N number of cameras
CAMi camera i

pCAMit
j the confidence value of label j detected from camera i at time t

pst probabilistic spatio-temporal element
Θ query operators
Sfunc name statistical functions

3.3.1 Probabilistic Spatio-Temporal Data

Let D be a detection system that consists of a set of r concept detectors

D = {D1, D2, . . . , Dr}. Let li be the corresponding semantic label extract-

ed by various concept detectors Di, L = {l1, l2, . . . , lr}. For example, D can

be VIREO-374 [50] where r = 374. The N cameras in the system are de-

fined by CAM = {CAM1, CAM2, . . . , CAMN}. As we assume that each concept

detector Di will assign a symbolic label li as well as the probability value

pi, we define 0 ≤ pCAMit
j ≤ 1, (1 ≤ i ≤ N, 1 ≤ j ≤ r), be the confidence

value of label lj from by detector Dj, being applied to the raw media data

captured by camera CAMi at time t. Let S = {S1, S2, . . . , Sn}t be the pro-

cessed probabilistic spatio-temporal stream from whole camera network, where

Si = {(lCAMi
1 , pCAMi

1 )t, (lCAMi
2 , pCAMi

2 )t, . . . , (lCAMi
r , pCAMi

r )t} represents concept

information detected from each individual camera.

Definition (PST: Probabilistic Spatio-Temporal Data)

The fundamental building block for low-level concept representation is the

probabilistic spatio-temporal element pst.

pst = [location, time, label, probability, pointer] (3.1)

where:
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• location = [lat, lon] represents the geo-location – latitude and longitude

– of the camera location. We assume that the camera is static here but

it naturally can be extended to mobile cameras as well.

• time stores the time information of captured data.

• label represents semantic concept such as car, human, crowd, parade,

etc., detected in the stream. Generally, these concepts express low-level

abstraction of information which could be semi-reliably detected by ex-

isting detectors or classifiers.

• probability is the confidence value in [0,1] representing the output of a

concept detector as a probability value.

• pointer points to the actual raw data stream. While our intention is

to abstract the raw data into a concept level data structure, it is also

necessary to store the reference to the real data for further validation.

An example of pst data describing the “crowdedness” situation at 5th Avenue

of 11 Street Manhattan on November 24th, 2014, 15:10:16 is as following:

[5Ave@11Street, 20141124 : 151016, crowdedness, 0.9, image path];

3.3.2 Cmage

Extending the idea of “Emage” which represents aggregated social interest of

users [105], we project the probabilistic spatial temporal data with attached

concepts onto the spatial map to form a Cmage (concept image), to provide

an intuitive visualization. The Cmage is a pseudo image presentation of an

ongoing situation in a region, constituted by concept pixels indicating a con-

fidence value of a particular semantic concept. Each pixel in a Cmage is a

PST point that contains the probability of that concept being detected by

concept detectors from an image captured at a particular spatio-temporal u-

nit. Note that there is one Cmage for every concept. Let X be a 2D point
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set (lat, lon). A Cmage on X at a given time t is any probabilistic spatial

temporal element (L × V )X , where L is the concept labels set and V is a

probability value set of real values between 0 and 1. A Cmage is denoted as:

gl = {(x, p)|x ∈ X = <2, 0 ≤ p ≤ 1, l ∈ L)}. A Cmage example is shown in

Figure 3.2. The campus is divided into 3 × 4 grids. The 7 foodcourts are at

Figure 3.2: Crowdedness Cmage of NUS Foodcourts at 12:00 on 24th March 2014.

cells numbered from 1 to 7. Higher pixels intensity means higher confidence

of “Crowdedness” in that spatio-temporal point.

3.3.3 PST Data Filtering Operators

In order to efficiently retrieve relevant PST data by describing the data prop-

erties, we provide a set of basic operators for a user to query based on specific

PST elements. The user can also apply analytic functions after obtaining the

relevant subset of PST data. Hence the framework is envisaged to be used

interactively by the user to gather insights.

Context-based Selection of Detector: Based on the prior knowledge

of cameras (location, camera properties, history pattern or new information

from other sources, e.g., social media), we define a concept selector τtask to

allow selecting a subset of cameras for achieving specific concept detection
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tasks.

{T1, T2, . . . , Tj} = τtask (T,CAMi, li) , where : Tj ∈ T (3.2)

Query Operators: Θ select a subset of data from the stream as a filter

based on user specification. We use Predicate P as boolean function applied

on a “pixel” (PST data point) of Cmage. Based on the four elements of PST

data, we provide filtering by the functions indicated by P filter(exp):

ΘP filter(exp)(S) = {(lCAMi
j , pCAMi

j )t|P filter(exp) = True} (3.3)

where P filter are predicates on an element of PST data.

These filtering functions can retrieve from the PST stream by taking a

user-defined pst related expression as the parameter. Once the expression

satisfies the predicate, a subset of S ′ ⊆ S will be returned. Note that since

the filter operations are based on predicates, we can combine multiple atomic

predicates on pst data to form compositional queries.

Examples: Show the March 17th data for the concept of “traffic” or

“parade” at the 5th Avenue with confidence value higher than 0.8:

Query: ΘP PROP∧P LAB∧P LOC∧P TEMP (S)

where:

P PROP = P prop(0.8 ≤ p)

P LAB = P lab(label = traffic ∨ parade)

P LOC = P loc(CAMi) = 5thAvenue)

P TEMP = P temp(t = March 17th)

3.3.4 Data Analysis Functions

As the PST element is a numeric data presentation with spatial, temporal and

symbolic information about ongoing events or situations, we define a set of

functions and arithmetic operations that could be applied on the PST values

to extract characteristics or features of happening events.
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Statistical functions: Sfunc name are used to analyse the PST dataset

so as to explore the patterns or the nature of the stream by calculating ex-

treme values, mean, trends, change points or other statistic-related indicator

or parameters. The set of functions defined in our work is as follows:

a) mean, max, min, sum

Smean(D) calculates the average value of a given set of data. Here we con-

sider the data of the same label. The input data D could be a Cmage set

g
{l1,l2,...,lk}
t or a subset of PST stream S ′ ⊆ S of label l. The function gives an

averaged Cmage gmt with pixels cp = (lat, log, t, l, probmean), where probmean

is calculated by taking the average probability value along the temporal ax-

is. e.g., showing the average intensity of concept c in Cmage between t1 and

t2 : gmt1−>t2 = Smean(ΘP lab(label=c)∧P tem(t1≤t≤t2)(S)). Smax(D), Smin(D), and

Ssum(D) are computed in a similar way.

b) extremes

Extended to the max and min functions, Sextremes(D) calculates the PST data’s

local minima and maxima along the temporal axis as well as among spatial

regions, corresponding to the probability values. The results are computed

by comparing current data points with nearby data in a spatial region or

with close data in the temporal axis. The output are the PST data with

a tagextreme ∈ {crest, trough, plateau}. Example: show the peak hours in

foodcourt A: Sextremes(D)(ΘP lab(crowd)∧P loc(canA)(S))

c) trend

A tweeting camera keeps sensing the environment at all times, so it would be

helpful to design a function Strend(D) to discover the social trend or changes

from certain concepts pattern along time [7]. The function calculates the

gradient of every data point along time series and returns every PST da-

ta with a tagtrend ∈ {ascending, descending, plateau} as well as the trend-

ing rate r ∈ <. Example: show the trend of crowdedness in foodcourt B:

Strend(D)(ΘP lab(crowd)∧P loc(canB)(S))
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d) smooth

Along with the temporal dimension, a concept detector (e.g., car detector)

may be unreliable due to the environmental changes (e.g., illumination change

or occlusion); therefore, the PST data generated by the sensor and hence the

low-level concept detectors contain noise that may affect the further analy-

sis. The Ssmooth(D) function smooths the PST data with Gaussian filter and

convolution operator, so as to remove the noise in the data.

e) outlier

The abnormal data pattern is regarded as important information that deserves

an alert for the tweeting camera system. A Soutlier(D) the function is defined

for extracting statistically abnormal data points from PST dataset. The func-

tion uses normal distribution model to fit the dataset and calculates the mean

and variance of the observation. After that, it allows the user to specify a

threshold as an abnormal pattern in terms of σ. Example: show the time

when the crowd concept has an abnormal intensity during a particular period.

Soutlier(D, σ)(ΘP lab(crowd)∧P tem(t1≤t≤t2)(S))

Data Mining with PST: Computing spatial clusters/segments help in bet-

ter characterizing the situation across regions [8]. We define the clustering

function CL to group a set of PST data or ’pixels’ of a Cmage in various di-

mensions (spatial, temporal, concept) based on the probability values of each

data points. For example, CLloc(ΘP lab(c)(S)) = {locgl1 , loc
gl
2 , . . . loc

gl
n } gives the

locations of each group gl ∈ {gr1, gr2, gr3}, where in gri the probability values

of the subset data points (lCAMi
r , pCAMi

r )t of concept l are close to each other.

Density Function: C takes the PST dataset and calculates the number of

elements that satisfy a predefined requirement. The set could be a Cmage, the

whole PST dataset or a sub-stream of PST dataset selected by the filtering

operations described in the previous section. It can be used on various dimen-

sions of data for deriving the characteristics of that particular dimension. For

instance, when a specific event happens, the number of the cameras capturing
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the concept of this event gives us an intuitive information about the situation.

Example: calculate the number of cameras that detected “person” concept

between time t1 and t2: CCAM(ΘP lab(person)∧P pro(p=1)∧P tem(t1≤t≤t2)(S))

3.3.5 Incorporating Social Information

Once interesting PST data characteristics has been detected, camera loca-

tion information is utilised to query social media tweets posted around the

camera location, and the time interval during event (e.g., when an anomaly

was detected (i.e., [t1, t2])) is used to compare current highly frequent tweets

with historical tweets, so as to obtain textual information that best describes

an event using social media. The text analysis architecture including tweets

preprocessing and representative term mining is shown in Figure 3.3.

Figure 3.3: Architecture of Twitter Data Processing.

All the tweets posted during [t1, t2] are considered as a document denoted

as TC , and the historical tweets denoted by TH refers to all the documents of

other than the event time in the past days; tf-idf is used to analyse the relevance

of each term among them once both TH and TC are obtained. Equation 3.4
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adopted from [87] is used to calculate the weight of extracted terms that could

best describe the event.

wterm = tf(term, TC)× idf(term, TH)

s.t.


tf(term, TC) =

f(term, TC)

max{f(w, TC),∀w ∈ TC}

idf(term, TH) = log
|TH |

|{th ∈ TH : term ∈ th}|

(3.4)

where tf is the function to calculate the frequency of the term in the current

tweet document (TC), and idf refers to the calculation of inverse document

frequencies in all the historical tweets documents (TH). Therefore, terms with

high weights mean that they are highly discussed in current document (event

related topics) and less discussed in the whole collection of historical tweets.

To fuse information from both physical and social sensors, we define event

signal Ese =< Ise(e), Iso(e) > where Ise stands for event sensor signal and Iso

stands for event social signal. Here we take confidence value of a particular

concept c as Ise and term weights of tw as Iso, in which c and tw are closely

related or the same content. Then we adopt equation 3.5 to fuse them to

derive final event signal intensity.

Es(e) = wse ∗ Ise(e) + wso ∗ Iso(e) (3.5)

where wse and wso are considered as weights of sensors that can be specified

by users.

3.3.6 Cameras Tweeting Rate

Since we use the polling method for fetching camera data, this determines how

frequently a camera tweets. Currently, we have set the cameras to regularly

tweet once every 10 seconds. However, we provide flexibility to the user in

setting this camera tweeting rate by ctr = T (x) posts/second.
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3.4 A New Paradigm of Socialized Sensors: Re-

alization of Tweeting Camera

Cameras represent one of the most utilized physical sensors to monitor our

world. They are also the main contributor to the phenomenon of Big Data.

However, the level of detail provided by cameras often raises privacy concerns.

Both challenges currently impede the most wide-spread sharing of data stem-

ming from cameras which would enable new types of services and applications.

This section introduces a novel smart tweeting cameras paradigm that con-

nects human with pervasive visual sensors through social networks. In the

nutshell, we have developed a smart camera that maps the visual data into

higher-level concepts using customized classifiers. This avoids the bandwidth-

hungry sending of raw camera feeds and intrinsically enables a much higher

level of privacy preservation. Using additional light-weight processing on a

camera, it only outputs information in case user-defined events occur. We

make that low-volume, high-level information available by letting cameras di-

rectly tweet their outputs. These outputs can be regarded as the examples

of “CamTweets” discussed in section 3.2.2. With that, users or applications

can “follow” cameras alongside other tweeting objects, joining a novel type

of social cyber-physical ecosystem. In addition, we designed a self-learning

module in which enables natural human-camera interaction through a social

network (Twitter). In such natural interaction, humans can tell a camera

which specific concept (e.g., person name of a new face) it has captured when

it thinks having detected abnormal/new events. The replies of CamTweets

from humans are considered “labels” for the “training data” that are used for

the learning process of the cameras. In the long run, these socialized cameras

in our proposed paradigm can automatically update their models and become

smarter by learning more “labelled” knowledge with the help of human efforts

in the loop. Figure 3.4 and 3.5 show the idea of tweeting camera paradigm
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and working flow that embeds learning process involving human interactions.

In Figure 3.5, each tweet from the “SeSaMeCamera” account represents an

example of “CamTweet” introduced in section 3.2.2. Here we disclose the raw

image only for illustration purpose. In a real scenario, “CamTweet” could be

easily configured not to release raw images.

Figure 3.4: From Traditional Camera Network to New Sensing Paradigm made from
Tweeting Cameras

3.4.1 Hardware Components

Our camera prototype (Fig. 3.6) is based on a Raspberry Pi 3 single board

computer which is equipped with a 1.2GHz 64-bit quad-core ARMv8 CPU

clocked at 900 MHz per core, 1 GB of SDRAM and wireless module. A Pi

camera or a Sony IMX219 8-megapixel sensor can be connected to the board

via the Camera interface (CSI) or USB respectively. Both cameras are capable

of maximum resolution of 2592x1944 pixels static images. The system runs an

embedded Raspbian Jessie OS booted from a 64G microSD card.
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Figure 3.5: Tweeting Cameras Working Flow

3.4.2 Software Architecture

The tweeting camera contains three software components, namely Event Han-

dler, Logic Processing and Data Communication (Fig 3.7):

The Event Handler detects abnormal events or new faces and recog-

nizes known events or faces based on the images captured by the camera. To

achieve a high accuracy, we use Visual Recognition of the IBM Bluemix cloud

platform [107] for event classification and the Open Biometric Verification li-

brary [55] for the face recognition task. The training step is triggered when the

camera receives human replies and the camera tweets are generated based on
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Figure 3.6: Prototype of A Tweeting Camera

Figure 3.7: Tweeting Camera Software Architecture

the response of cloud services. The Logic Processing component processes

the responses to notify only about “interesting” events, where a pipeline is

implemented using a query algebra to process and manipulate the data, as

well as triggers to invoke user-defined actions. The Data Communication
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component implements a Python-based Internet connection with an associated

Twitter account. The camera calls the Twitter API to post information from

the Logic Processing component as well as to receive replies from humans to

trigger a new learning process.

3.5 Experiments and Discussion

This section conducts analysis on our proposed framework that integrates

physical camera information with social information for large scale situation

awareness and demonstrates how our proposed tweeting camera paradigm

could facilitate event detection for daily use in the real physical world.

3.5.1 Datasets

NYC Traffic CCTV Camera

We have crawled live feeds from 150 public CCTV traffic cameras distribut-

ed on the roads all over the Manhattan district of New York City, which are

under the management of the Department of Transportation. The live cam-

eras provide frequently updated still images from several locations in the five

boroughs. The update frequency varies from 1 second to 5 seconds. We have

collected our data (resolution of 352×240) during March 13, 2014 to March

19, 2014, June 24, 2014 to August 20, 2014, and October 3, 2014 to October

22, 2014, with a total size of data being 1.23 TB, to ensure sufficient variety.

This dataset is denoted as NYC traffic in the remaining section.

NUS Foodcourt CCTV Camera

The NUS (National University of Singapore) foodcourt video dataset con-

sists of feeds from 73 standard CCTV surveillance cameras located at 9 dif-

ferent foodcourts on the NUS campus. Each foodcourt has several cameras

facing either seating area or the food stalls areas. The data has been recorded
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over six months.

Twitter Data

We have crawled tweets using Twitter Streaming API from October 08,

2014 to August 14, 2016, with the geographic bounding box of [40.698770,

-74.021248, 40.872932, -73.905459] which includes Manhattan, and collected

a total of 42,778,483 records. Each record is stored in the database with the

original set containing all data fields such as time of created, geo-location, text

etc.

3.5.2 Evaluation Approach

In this study, we analyze the effectiveness and capacity of our framework to

detect different events. We evaluate our framework by comparing detected

events with ground truth shown in the next section, and illustrate the semantic

meaning of the change of sensor data pattern by mining social information.

Events Ground Truth We use the notices posted on the “Weekend Traf-

fic Advisory” website of the New York City Department of Transportation for

obtaining the ground truth.1 This website details traffic alerts in terms of lo-

cations of road construction and other events that will affect the flow of traffic

for the coming weekend. The ground truth for the events that we try to detect

is shown in Table 3.2.

Table 3.2: Real-world Events Ground Truth

Event Date Time Location
CBGB Music Festival 12 Oct 10am-7pm Broadway 51 Street
Hispanic Parade 12 Oct 12pm-5pm 5th Avenue
Columbus Day Parade 13 Oct 11am-5pm 5th Avenue
Saint Patrick’s Day Parade 17 Mar 12pm-5pm 5th Avenue

Million March NYC Protest 13 Dec 2pm-5pm
Washington Square Park,
5th Avenue,Foley Square

1http://www.nyc.gov/html/dot/html/motorist/wkndtraf.shtml
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Measurement

To demonstrate the effectiveness of the framework, we consider the detec-

tion rate of each event listed in Table 3.2. As per the signal detection theory,

the threshold for the corresponding concepts is evaluated in terms of detection

rate.

3.5.3 Results

We evaluate our framework by examining the detection results and social in-

formation fusion results on the four events shown above. For event detection

using sensors, we look at the concept results and demonstrate the usage of

proposed analytic functions as well as visualization of Cmage. In the use of

social information, we compare event relevant tweets during event happen-

ing time with ordinary non-event time in terms of the tf-idf values as word’s

importance weight.

Event Detection based on SDT We use concept confidence, values of

specific visual concept extracted from the sensor data, to represent the event

signal. Signal Detection Theory is then applied to model event noise and

event signal with respect to the confidence values for event detection. Note

that the distribution is only valid between 0 and 1 since the confidence value

is a probability value. Figure 3.8 shows the distribution of “parade” signal

from camera in 5th Avenue 57 Street.

The distribution is determined by calculating the mean and standard de-

viation of concept results from images captured on October 13, 2014, from 2

pm to 3 pm to when a “Columbus Day Parade” event was happening. The

non-parade curve depicts the concept results from same time but on different

days when there are no parade events. These data are analyzed to determine

an optimal threshold for a particular concept detector for a camera. Note that

since different cameras usually capture different scenes, the optimal threshold
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Figure 3.8: “Parade” Signal Distribution in 5th Avenue at 57 Street.

of a particular detector is not always the same. Also, for a particular camera,

varying the threshold would cause different hit rate as well as false alarm, as

depicted in Figure 3.9.

Figure 3.9: ROC Curve of “Parade” Signal in Three Locations.

This figure shows ROC curve of the parade detector for three different
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cameras. The threshold is chosen from the point that is closest to the left

upper corner of the ROC curve, which trades off the hit rate and the false

alarm rate. Therefore, the cusp point in the ROC curve i.e. the point that

minimizes false alarm while maximizing hit rate is chosen as the threshold. For

example, the threshold for the parade concept in Camera of 5th Avenue 57 St

is computed as 0.07. Once the threshold is set, it is fixed for the specific cam-

era to automatically trigger event alerts. The “fixed” value of the threshold is

according to each concept detectors applied on the camera. However, for dif-

ferent cameras, since they capture different scenarios, the threshold could also

be manually reconfigured accordingly. Using this threshold, we examine the

detection performance of two parade events in terms of f1-score; the analysis

is shown in Figure 3.10 and 3.11 for two cameras.

Figure 3.10: F1 Score for Camera in 5th Avenue at 49 Street

We use the threshold to analyze the results of both “Columbus Day Parade”

and “Hispanic Parade” event, and compare our thresholding results with the

baseline which is given by the detectors in the label field based on a fixed value

0.5 as the threshold. As can be seen, having an adaptive threshold significantly

improves the performance.

Applying Analytic Functions Once concepts’ confidence is obtained for

58



Chapter 3. Tweeting Cameras for Event Detection

Figure 3.11: F1 Score for Camera in 5th Avenue at 57 Street

image snapshots of cameras, predefined analytic functions such as “smooth”,

“extreme”, “trend” can be applied to obtain meaningful information such as

event pattern, concept trending by interacting with Cmage in the second layer

of our framework.

Figure 3.12: People Marching Concept Results from 8:00 to 18:00 in March 17th,
during Saint Patrick’s Day Parade Event

Figure 3.12 shows the people marching concept detailed results with s-
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moothing function from 8:00 to 18:00 in March 17th Saint Patrick’s Day. It

is shown that the peaks occur from 11:00 in cameras at 5th Avenue 42, 49,

57 and 72 streets. This demonstrates that the function performs reasonably

well in providing a smooth curve for the concept and effectively reducing the

impact of sensor uncertainty.

The Foodcourt videos are separated into frames and the crowd volume

index for the frames is calculated every 30 seconds through background sub-

traction. Given a snapshot taken at time t from Camera A, the crowd analyser

will return a crowd index in the range of [0, 1], a higher value representing a

higher intensity of crowdedness. Therefore, we are able to convert the image

to the unified probabilistic spatio-temporal data point

(loccam A, t, “crowd”, probability),

where the location is the canteen having the camera. Therefore, the cam-

eras would tweet crowd information twice every minute.

Figure 3.13: The Crowd Extremes at 7 Foodcourts on Sunday.

Figure 3.13 shows the crowd intensity on Sunday. Being applied with the
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extreme function, the two curves labelled with circles show extremes of the

crowd intensity. These are foodcourts near student dorms. As can be seen,

the curves match with real situation, sketching two major peaks at lunch time

and dinner time and provide the information of foodcourts that remain open

on Sundays so that user could have the idea of where and when to go for lunch

and dinner.

Figure 3.14: A Campus Foodcourt Cmage Crowdedness with Arrows indicating
the Trend of Ascending, Descending and Plateau.

In addition, we show the crowd density Cmage trend (with labels) of cam-

pus canteens from 9 am to 6 pm on 21st March 2014 in Figure 3.14. The trend

function is applied after data are smoothed with the smooth function and the

trend is calculated by taking the gradient value of a time point. If the gradient

is below a given threshold t, the Cmage pixel will be labelled “plateau” at that

time. If defined by user preference, a tweeting alert could be triggered with

Cmage sending a notification to an end user.

Cross Media Analysis & Social Sensor Fusion To extract the relevant

semantic information from tweets in order to fuse with the camera information,

we conduct term frequency analysis from social media by using tweets posted

nearby the places where an event occurs. All the tweets are separated into

different documents in terms of each hour and distance to a camera location.
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The time span of a document could be several hours depending on the start

time and end time of detected events. For example, tweets posted from 1 pm

to 5 pm within a geo-circle centered in 5th Avenue 42 Street are stored as

one document. Here we set the radius as 0.01 in terms of coordinates. High-

frequency terms of a given location and tweets during the events are shown to

the user through the framework interface. Examples are shown in Figure 3.15.

(a) Social Sensor Fusion for
“Columbus Day Parade”

(b) Social Sensor Fusion for
“Hispanic Parade” Event

(c) Crowd Concept and Salient Topic
Words during “CBGB Musical
Festival”

(d) Sensor and Social Information of
“Million March NYC” Protest
Event

Figure 3.15: Social Sensor Fusion for Real-world Events

We calculate the term weight for each word posted from a specific location.

Words of bigger size represent higher weight. As can be seen, most tweets

posted near an event location are able to give a high-level semantic meaning
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of the event, e.g., Figure 3.15 (a) and (b) confirm the events are indeed the

“Columbus Day Parade” and “Hispanic Parade” events respectively. (c) offers

details of a musical band (DEVO) that participate in CBGB musical festival,

and in (d) “Million March NYC” protest event is captured by both tweets and

camera feeds in terms of “crowd” concept. Video demos of “Million March

NYC” protest event could be found in Youtube links 2 3 4

Table 3.3 shows the comparison between our approach to social information

mining with baseline in terms of a number of tweets. As represented, our

framework utilizes sensor information (where and when an event is detected)

to significantly (from 105 to 103) reduce the noise in the tweets. The baseline

TH and TC are the numbers of geo-tagged tweets crawled before and during

the event respectively. Our approach TH and TC are the numbers of geo-

tagged tweets crawled around the event location before and during the event

respectively.

Table 3.3: Comparison based on Number of Tweets Analyzed

Event
Base line #tweets our approach
—TH— —TC— —TH— —TC—

Hispanic Parade 86,714 24,357 1,496 225
Columbus Day Parade 111,071 21,891 1,573 335
CBGB Musical Festival 86,714 24,357 1,321 369

As shown in Figure 3.16, according to the equation defined in section 4.5

the final parade event signal intensity is improved when compared to using

each individual sensor. Here the Ise(“parade”) here is the average confidence

value in time span tweeted by the cameras. Though here only the “parade”

is detected from both, this equation could also be generally applied when

concepts discussed in two type of sensors are similar or correlated (e.g., a

“crowd” concept detected could be related to a musical festival CBGB), which

2https://www.youtube.com/watch?v=UdCXzDuJtec
3https://www.youtube.com/watch?v=USjC263XSvE
4https://www.youtube.com/watch?v=AcBvfh8wKCU
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Figure 3.16: Comparison among Fused, Physical and Social Sensor Results of
Detecting the “Columbus Day Parade” Event

would be our future exploration.

To conclude, by automatically computing the concept detection threshold,

we are able to improve the event detection rate and offer a user the ability

to analyze event patterns. Based on the spatial and temporal information

provided by the sensors, we can leverage on the social information to give

more detailed information of events.

3.5.4 Tweeting Camera Paradigm

Real Scenarios

In the following, we describe four application scenarios we have implement-

ed so far. Figure 3.17 shows a screen shot of our camera’s Twitter account

“@NUSSeSaMeCamera”.

Lighting status : We implement a function for checking if the lights in our

office are on or off. By facing the camera in different angles, we collected

positive and negative training samples with the lights turned on and off. We

extract HSV color features from the images and calculate the probability of

“lights on” by measuring the distances between a new sample to the center of

two categories (“lights on/off”) using the L2 norm. The probability calculation
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Figure 3.17: Camera Tweeting about Lighting Condition of An Office

formula is:

P on =
|sn − scoff |

|sn − scoff |+ |sn − scon|
(3.6)

To avoid sensor noise and make detection reliable, we average over the last

ten measurements. When the state of the lights changes, we send a tweet with

the last recorded image.

Meeting event : In our lab, if the meeting room is taken up for a discussion,

the door is usually closed and the lights are on. When the door is left open

and lights are out then there is no meeting. Again, we collected the training

data accordingly. We extract HoG features from the training set and use
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an SVM to train the concept detector. Since a meeting event is typically

longer running, we can compensate occasional misclassification by only sending

a new tweet if the last n (e.g., n = 5) results are identical. Due to the

complexity of events and the involved processing steps, images are taken and

analyzed every 10 seconds. Such a sampling rate is valid for events such as

meetings, presentations or home monitoring where the scenarios do not change

significantly in a short time.

Face & people detection: We adopt existing face detectors and people detec-

tors provided by OpenCV [21]. Similar to meeting detection, when the camera

detects a new face or a person (or the disappearance of a formerly detected

face or person) over a period of n measurements, it sends a corresponding

tweet.

Event Learning - New Face and Group Meeting : In face recognition sce-

nario, a captured image is first sent to the Event Handler for face recognition

as well as event classification. We use OpenBR to return a response indicating

a new face has been detected; the Logic Processing component will then de-

termine if this information should be tweeted. A tweet is only generated once

the status of physical world changed (e.g., from non-face to face appearing, or

from event category c1 to category c2). The owner of the camera can reply

to a tweet telling the camera who the person on the embedded image is. The

Data Communication component is constantly receiving new replies and pass-

es them to the Event Handler to update the face database. When the same

face is captured by the camera again, it will be recognized and the camera will

tweet about a known face (with the name of this person) being detected. For

a group meeting event learning, the camera uses IBM Bluemix cloud platform

to learn the concept from newly captured images and is able to tweet if there

is a meeting going on or not. A video illustrating face recognition as well as

meeting event recognition (i.e., meeting starts, meeting finishes, room being
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occupied) can be found in our project website 5.

Performance Evaluation

We measure the tweeting camera’s performance by examining the memory

usage and the speed of processing in terms of seconds per frame. The concept

detectors are implemented in C++; the data processing pipeline is written in

Python. The resolution of each captured image is 640x480. The performance

for different tasks is shown in Figure 3.18. The memory usage is the same

for either individual detection task or a combination of the four tasks, which

costs 14 MB. The memory usage for data processing is less than for concept

detection. In terms of processing speed, we can see that the light and meeting

detection requires minimal runtime while the face and people detection nat-

urally demands more computation due to the complexity of learning model.

Figure 3.18: Memory Usage and Processing Frame Rate

In addition, the size of each captured image is 120KB and Figure 3.19

shows how processing time decreases with different resolutions for each indi-

vidual concept and the combination of all. Apparently, the data size reduces

drastically from kilobytes to key-value pairs for each concept, which is on-

5https://sites.google.com/site/tweetingcamera/
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Figure 3.19: Running Time versus Captured Image Resolution

ly a few bytes, yet provides high-level information via semantic compression.

This meets our goal of greatly reducing the huge amount of data to a human

readable level of information and protecting the privacy of captured identities.

3.5.5 Discussion

Our experiments have verified the significant correspondence between physical

sensors data and virtual social information. Any improvement in the quality

and scope of concept detectors will immediately benefit the proposed method.

In the second layer, more filtering options, and analytic operators to query

various types of event can be provided. The unified data representation for

visual sensors and analytic operators allows users to flexibly specify events

characteristic for detection. One of the areas of improvement is the efficiency

in performance. Concept detection requires considerable computation power

and time to generate the camera tweets, which may not be able to keep up

with the frame rate of camera feeds. Subsampling of the feeds could be one

of the solutions. However, dropping of frames might lead to loss of critical in-
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formation for events of short duration. Thus, improving the quality of camera

tweets and generating them real-time is an open problem and such trade-off

is also discussed in [58].

Additionally, it would be interesting to see if anything useful can be ex-

tracted from Twitter images. Given this, figure 3.20(a) shows the sample im-

ages posted in Twitter during “MillionMarchNYC” protest event and 3.20(b)

shows the concepts extracts from these images, bigger words meaning they are

posted more frequently during the event. As can be seen, the Twitter images

could also provide events-related information for the situation.

(a) (b)

Figure 3.20: Images Posted in Twitter during MillionsMarchNYC Event

Letting a camera output high-level information as a result of processing

raw image data on the camera itself reduces the volume of transmitted data

drastically. The accuracy of the customized classifiers trained for a specific

setting is generally very high. This flexibility and accuracy, however, comes

with a price. Commonly available cameras are typically very easy to use since

they simply output the raw camera feed. The performance of classifiers cur-

rently heavily depends on third party online cloud services such as Bluemix

and could be rather poorly depending on the actual environment. Graphi-

cal tools for formulating queries of relational data are already common, and

services that allow training classifiers online also exist.6

6https://www.metamind.io/vision/train
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3.6 Summary

In this chapter, we propose a novel multi-layer tweeting cameras framework,

which uses visual sensors to tweet semantic concepts for event detection. We

define a unified Probabilistic Spatio-Temporal (PST) data structure to inte-

grate the low-level concepts from the network of visual sensors. A number

of filtering operators and analytic operators are also defined for the user to

apply on such PST data so as to derive mid-level concepts that are suitable

for higher level data visualization. We also discussed how information from

the physical sensors and social media sensors can be fused to infer high-level

semantics. Experiments on three real-world datasets have confirmed the ef-

fectiveness of our proposed framework. More information is available on our

project website7 including code, data, and results.

Continuously streaming sensor data to a central server or the Cloud is the

state-of-the-art approach for storing, processing and sharing sensor data. Al-

though this is suitable for simple scalar values such as temperature, humidity,

voltage, etc., it poses significant challenges for streaming visual data. Many

monitoring use cases, however, do not require continuous updates but rely on

the detection of events of interest. With proposed tweeting camera platform,

we perform a semantic compression to address both challenges. The core idea

is to equip each camera with additional logic that maps the raw data into low-

volume, high-level information. We extend the concept of tweeting objects

and let cameras tweet detected events. Such new tweeting paradigm utilizes

human knowledge to make cameras constantly update its learning models and

become smarter in detecting and recognizing events. We believe that fusing

tweets from both physical sensors and social sensors (i.e., humans) facilitate

an exciting ecosystem for monitoring and observing our surroundings.

7https://sites.google.com/site/fredyuhuiwang/home
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Cmage Based Hybrid Fusion of

Physical and Social Sensors

4.1 Overview

Event signals from physical or social sensors usually reflect various spatio-

temporal and semantic patterns [87]. Fusing and exploring these multimodal

sensor streams, which capture different perspectives of an event, could, there-

fore, result in locating, semantic interpretation of various events with higher

accuracy. However, due to the heterogeneous data representations, different

spatio-temporal densities, and the inherent noise in each modality, the fusion

of such multimodal data remains a challenge. Thus there is a need for not only

a unified data representation format but also a sophisticated framework that

can combine and analyze such multimodal data for better event detection.

Identifying space and time as the unifying axes for multimodal event data,

we extend the Cmage concept introduced in Chapter 3, and propose to use

this image-like representation for designing a generic hybrid fusion framework

for heterogeneous event signals. Such representation provides a generic way

to model heterogeneous spatio-temporal data and also allows for the use of
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a rich repository of image processing algorithms (e.g., convolution) to easily

derive semantically useful event information from such data. From a human

user perspective, image, as an artifice that depicts or records visual perception,

is also an intuitive way to visualize and understand different phenomena. In

particular, we generate sensor Cmage and social Cmage as building blocks for

hybrid fusion, from physical sensors and social sensors respectively.

A sensor Cmage is generated by aggregating information coming from mul-

tiple physical sensors based on their spatial distribution. A sensor decision is

considered the confidence of specific visual concept extracted from the sensor.

For example, a crowded being detected from an image captured by a camera

with some confidence x (valued between 0 and 1); or a semantic word “protest”

detected from the social stream as an occurring event with high frequency

posted in an area. They represent a sensor confirming some event’s occurring.

Higher sensor decision values mean higher confidence of detecting such event.

The geo-locations of the sensors define the corresponding pixel’s positions in

the image and the intensity of each pixel is computed by extracting higher

information from the sensor readings (e.g., using concept detectors [50]). For

example, Figure 4.1 shows how a “crowd” image is generated from Manhattan

CCTV cameras readings. The left shows distributed physical sensors (CCTV

Cameras) detecting particular concept (“Crowd”) with different probabilities.

The middle shows corresponding conversion into sensor Cmage with sparse

pixels. The right part simulates dense sensor readings by applying Gaussian

Process model to predict missing pixels in a given region. Similarly, a social

Cmage is generated by aggregating geo-tagged social information (e.g., tweets)

in an area and the pixel intensity denotes the popularity of particular social

terms, such as trending hashtags in that area.

As can be seen, though such a (pseudo) image representation allows for

intuitive visualization of the situation, due to the intrinsic properties of the

sensor and social information, event Cmages usually contain noise to differ-
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Figure 4.1: Generating Sensor Cmage from Sensors Map.

ent extents. For example, the location in a social Cmage may be incorrect

if people discuss an event at locations other than the event’s origin. In ad-

dition, the distributed physical sensors have different sparsity compared with

the social feeds, which makes event information unavailable at some locations

(pixels). Such noise and sparsity properties make event locating and situation

understanding a hard problem even when dealing with multiple channels of

information. To tackle this problem, we design a hybrid fusion framework

including decision fusion and spatial fusion to fuse sensor Cmage and social

Cmage, so as to eliminate noise and meanwhile uncover semantic details of a

particular situation (such as a description of the event and its most related

concepts or topics). In order to achieve these, we first predict the signals for

places with no sensors using a Gaussian Process model. Second, we use a

Bayesian method to fuse images at pixel-level to generate event decisions by

combining corresponding pixels from both sensor and social Cmage. Third, in

the spatial fusion step, we also take the nearby sensors’ locations to a reference

sensor into account. A location’s event decision is updated by its nearby sen-
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sors and social event signals according to the distance between them. The final

fusion result is evaluated by the ability of the fused image to cluster potential

events candidates and the accuracy of locating events. Concepts and terms

of corresponding sensor Cmage and social Cmages are then used to uncover

semantic details for the event clusters.

The rest of this chapter is organized as follows. Section 4.2 describes our

hybrid fusion strategies including Bayesian fusion of event signals in terms of

event decisions, and spatial fusion that considers nearby event signals. Section

4.3 demonstrates the effectiveness of our hybrid fusion strategy using CCTV

camera data and Twitter tweets for three large-scale marching and protest

events. Section 4.4 concludes the chapter.

4.2 Methodology

We begin by defining the transformation from events signals to event C-

mages, followed by the hybrid fusion method description. The notation we

use throughout this chapter is defined in Table 4.1

4.2.1 From Event Signals to Event Cmages

Sensor Event Cmage: Csen can be generated from a set of M physical

sensors Ssen = {SEN1, ...SENM} in a region bounded by upper-left corner

Pul = (latul, lonul) and down-right corner Pdr = (latdr, londr) in terms of geo-

coordinates in the physical world. Each sensor SENm = Gm×Rm is composed

of its geo-location Gm = (latm, lonm) and its environment reading Rm (e.g.,

image captured by a camera, humidity value measured by a weather sensor,

and so on). A region is then separated into grids, using a user-defined grid size

rsen, to form the sensor event Cmage Csen = [esenij ]H×W , where H = (latul −

latdr)/rsen and W = (lonul− londr)/rsen and sensor pixel eij = F(SENm); F is
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Table 4.1: Cmage Fusion Notation

Symbol Description
M number of locations (physical sensors)
Gm geo-location of sensor m
Csen sensor event Cmage
Csoc social event Cmage
rsen user defined grid size
Rm reading of physical sensor m
F function transforming sensor information into numeric values
LAT mapping from geo-location to image x coordinate
LON mapping from geo-location to image y coordinate
termc posted word
POSTm the mth tweet
SOCi social observations in location i
pi the position of pixel i
ei the intensity of pixel i
e observed pixel values
ê predicted pixel values
P observed feature matrix
P? predicted feature matrix
σ2
n noise variance
K(·, ·) covariance matrix of pixels positions
Fn overall confidence values of n sensor streams
fij fused event confidence

the function that transforms the sensor readings into numeric values, such as a

concept detector [50] for an image, a direct copy of air quality index [43], etc.,

representing the strength of event signal with particular semantic meanings.

The mapping from sensor SENm location to corresponding image coordinate

is defined by i = LAT(Gm) = |latul − latm|/rsen, j = LON(Gm) = |lonul −

lonm|/rsen.

Social Event Cmage: Csoc is generated from a set of social observations

Ssoc = {SOC1, ...SOCM} in the same region as physical sensors, where each

observation SOCm = Gm × POSTm contains its corresponding geo-location

and the content POSTm (e.g., the tweet text). We define such posted con-

tent POST = {term1, ..., termc} as a set of terms (or words). Different from
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pixels of sensor Cmage where the value of each pixel is derived directly from

corresponding one physical sensor, the pixel values in social Cmage related

to nearby social observations. We propose using two methods to represen-

t the “social pixel” [105]: (1) density based signals; and (2) term frequency

based signals. The density based signal method considers the density of nearby

posts that contains the particular term. Specifically, given Csoc = [esocij ]H×W of

termx and a radius r, for social observation SOCm, eij = F(termx, SOCm, r);

where F =
∑|Ssoc|

k=1,dist(Gk,Gm)<rH(POSTk, termx) is the number of surrounding

social observations whose post POSTk contains the term termx, indicated by

H(POSTk, termx) and dist(Gk, Gm) is the Euclidean distance of two social ob-

servation locations. The mapping from social SOCm location to corresponding

pixel coordinate is defined similar to that in sensors Cmage, but with grid size

rsoc. For term frequency based method, the pixel value eij is calculated as

TF-IDF values defined in Chapter 3, which generate each term’s weight by

considering history posts in the same location. Terms of higher weight mean

that they are frequently discussed currently but seldom discussed in the past

days, which we consider as a good indication of occurring events.

4.2.2 Hybrid Event Cmage Fusion

Sensor pixel value estimation using noisy and sparse observations

Due to the intrinsic characteristic and sparse spatial distribution of sensors,

a sensor Cmage will be generated with many empty and noisy pixels, which

causes the problem for the later fusion with social Cmages. In particular, fusing

social pixel with a false empty pixel (e.g., the one between the two red pixels

in the bottom-right magnified patch of Fig. 4.1) will result in an empty pixel

reflecting there is no event, which is not the truth. To solve this problem, we

assume the sensor readings over an urban area to be realized from a Bayesian

non-parametric model, Gaussian Process (GP) [91], which incorporates noise
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model and allows the spatial correlation of sensor readings (sensor pixels) to be

formally characterized in terms of their locations in the image. This property

enables predicting empty pixels using observed sensor readings. Specifically,

assuming a sensor Cmage Csen
H×W is defined as {(pi, ei)|i = 1, ..., H×W}, where

pi and ei are the pixel’s position (pi = [lati, loni]) and intensity respectively,

we model the joint distribution of Q observed pixel values e = [e1, ..., eQ]> and

predicted pixel values ê = [eQ+1, ..., eW×H ]> at the test locations under the

prior as: ei ∈ [0, 1]

e

ê

 ∼ N

0,

K(P ,P) + σ2I K(P ,P?)

K(P?,P) K(P?,P?) + σ2I

 (4.1)

where P = [p1, ...,pQ], and P? = [pQ+1, ...,pH×W ] are the observed and pre-

dicted feature matrix respectively; σ2
n is the noise variance; and the elements

in covariance matrix K(·, ·) reflecting correlation between two pixels positions

pm and pn are defined by the covariance function:

k(pm,pn) = σ2
sexp(−

1

2

2∑
d=1

(
pm,d − pn,d

ld
)2) (4.2)

where pm,d(pn,d) is the d-th component of 2D (lat and lon) vector pm and

pn, and the hyperparameters σ2
s , l1, l2 are signal variance, and length-scales

respectively that can be learned using maximum likelihood estimation. Note

that term pm,d − pn,d measures the geographic distance of two locations in

terms of latitude or longitude.

Having this covariance matrix, values of predictive pixels can be defined

by the Gaussian Process regression equations:

ê = K>? (K + σ2I)−1e (4.3)
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ei = f(p i) + ε, ε ∼ N (0, σ2) (4.4)

where K? is the Q × (W ×H − Q) covariances matrix between predicted

pixels and observed pixels, and K = K(P ,P) is the Q×Q covariance matrix

of observed pixels; e is Q× 1 observation vector.

Event decision fusion We undertake a pixel-by-pixel fusion between the

sensor and social Cmages. Specifically, we adopt a Bayesian approach based

confidence fusion based on [11], where a general fusion of multiple streams in

terms of confidence values is computed according to the following formula:

Fn =
Fn−1 · fn

Fn−1 · fn + (1− Fn−1)(1− fn)
(4.5)

where Fn is the overall confidence values considering n sensor streams and fn

is the confidence value of nth sensor stream. In a two stream case, each pixel

esocij (esenij ) represents event decision’s confidence from corresponding locations

and the fused confidence fij is computed as:

fij = f(esocij , e
sen
ij ) =

esocij · esenij
esocij · esenij + (1− esocij )(1− esenij )

(4.6)

Using this fusion method, fusing two pixels of high confidence will result in

a higher confidence. Fusing high confidence with low confidence pixels (which

means conflicting observation) will result in a value close to the lower one and

two low confidence pixels will result in a much lower value than either one of

them.

Spatial fusion

For each social observation or sensor reading, spatial fusion considers its

surrounding signals which could contribute to the considered event signal.

The range to consider is defined by a fixed reference window Ww size×w size.

Windows size is set to be flexible so that users can specify the size of area
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based on the specific type of the events. Given a reference signal, each signal

within the window will be assigned a weight based on their distance to the

referenced signal. This is valid since a geographically closer signal has a higher

influence. Such a spatial fusion model is then defined by the fusion function

F as follows:

Figure 4.2: Illustration of Decision and Spatial Fusion

F (Csoc, Csen, w size) = {efusij } (4.7)

efusij =
∑

xy∈W ij

wxy · fij (4.8)

where |x− i| ≤ w size−1
2

, |y − j| ≤ w size−1
2

wxy = α · e−
√

(x−i)2+(y−i)2 (4.9)
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wxy is the weight given to the neighbouring pixels of referenced pixel efusij based

on their distances to it. An illustration of integrating decision and spatial

fusion is shown in Figure 4.2 with reference window size set to 3×3; the sensor

Cmage is preprocessed with Gaussian process resulting in a “Sensor Cmage

Patch” similar to the one shown in Figure 4.1. Note that Gaussian Process

is not applied to social Cmage, because unlike physical sensors readings that

vary smoothly across a region, human posts can appear anywhere much more

spontaneously, making social signals too noisy to be modelled with a smoothing

kernel (e.g., Eq. 4.2) as in GP.

4.3 Experiments and Discussion

We tested our fusion approach on the same dataset used in our first work. It

contains continuous image snapshots from 149 CCTV traffic cameras across

Manhattan, New York City, and geo-tagged tweets. In this short paper, we

demonstrate the efficacy of the proposed approach based on three popular

events (“ColumbusDayParade”, “MillionMarchNYC” and “StPatricksDayPa-

rade”) with large spatio-temporal coverage that is examined in work [115].

4.3.1 Evaluation Metrics

Saliency Metric: Events shown in the image should appear “natural” and

“sharp” to a human interpreter [88]. To this point, the fused images are

supposed to preserve the salient information and enhance the contrast for

visualization. In order to objectively evaluate our hybrid fusion algorithm,

we would need a “saliency metric” measure describing how events signals are

concentrated in a small dense region. This “saliency metric” is obtained by

averaging the spatial distance of the points belonging to the same cluster with

respect to the centroid of the cluster for each cluster. Such clusters can be
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obtained by mean-shift clustering [28] aiming to discover “blobs” in a smooth

density of samples. Given an image I, saliency metric S is defined by:

S(I) =
C∑
i=1

∑
pm∈CL(ci)

wim ∗Dist(pm, ci) (4.10)

where ci is the cluster centroid of cluster CL(ci) given by mean-shift clustering

and wim = em∑
pn∈CL(ci)

en
is the normalized weight for each pixel; for each cluster∑

wim = 1. A lower value of S means a more salient and concentrated region,

therefore a better image for visual analytics purposes.

MSE of Ground Truth: To demonstrate the efficiency of noise removing

in fusion process, we evaluate how much the fused event Cmage is matched

with the manually labelled ground truth discussed in Chapter 3.

4.3.2 Noise Removal & Saliency Enhancement

Figure 4.3 shows different Cmages for the “MillionMarchNYC” protest event.

Figure (a) is obtained by applying the “Marching” concept detector on the

CCTV camera recordings, generating a low-resolution sensor Cmage. Figure

(b) is obtained by calculating the TF-IDF weight of term “MillionMarchNYC”

according to [115], resulting in a high-resolution social Cmage. The intensity

of the pixels represent the signal strengths at the corresponding locations.

Red crosses are the centroids of clusters given by the mean-shift algorithm.

Saliency metric values are shown on top of the figures. As can be seen, Figure

(c) effectively enhances the contrast and saliency of event candidates than that

of Figure (a) and Figure (b), which look noisy. The fused image tells exactly

where this marching event is happening. This demonstrates that the proposed

Bayesian-based fusion in Section 4.2.2 can help enhance the signal if both

sources contribute to the confirmation of events and meanwhile eliminates the

noise based on their disagreement.
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(a) Sensor Cmage (b) Social Cmage (c) Fused Results

Figure 4.3: Event Cmages of “Million March NYC” Event: (a) Low Resolution
Sensor Cmage of “Marching” Concept ; (b) High Resolution Social Cmage of
“MillionsMarchNYC”; (c) Fused Image

4.3.3 Semantic Details Mining

The effectiveness of fusion is also demonstrated by extensive experiments with

different combinations of sensor concepts and social terms (sConcept-term),

shown in Figure 4.4. Blue, red and green bars are the saliency metric S of

the sensor, social and fused images respectively. They are ordered by value

S of fused images. Rather than presenting only a loosely defined concept,

such orderings help users to find the best matching semantic details of ongoing

events. For example, details about the “Marching” concept is best described by

the social term “blacklivesmatter”, which is a popular hashtag posted during

the protest. This shows that the fusion will have a good performance if two

concepts have similar spatial distributions in terms of their event signal.

Conducting experiments for two more events, we generated Table 4.2 show-

ing the average improvement in S values based on the proposed fusion method

for different combinations in terms of best matches (e.g., “parade” with “black-

livesmatter”, “stpatricksday”, “green”, “columbus” etc.). The Enhancement
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Figure 4.4: Saliency Metric Values S of Different Sensor or Social Event Cmages and
Fused Results

Table 4.2: S Values for Different Events

Events
Sensor
Image

Social
Image

Fused
Enhancement Rate

on Average
ClumbusDayParade 1.24 0.43 0.34 0.47
MillionMarchNYC 1.24 0.47 0.40 0.41

StPatricksDayParade 1.49 0.61 0.53 0.39

Rate measures how much the fused image enhances the saliency for sensor and

social on average.

We compare the sensor, social and fused Cmage with ground truth, which

is binary picture illustrating the location of this protest event. There are 6

locations where from the camera feeds, we are sure about the event happening

and generate a ground truth Cmage accordingly. All Cmages are compared

with the ground truth Cmage in terms of MSE. The result is shown in Fig-

ure 4.5.
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Figure 4.5: MSE of Sensor, Social and Fused Cmage Compared with Ground Truth
Cmage

Since we have detected the events and mined the related semantic words of

this situation, we specifically examine the Cmages of concepts that are close-

ly related to this events, including: “crowd”, “parade”, “people marching”,

“blacklivesmatters”, “millionmarchnyc” and “protest”. As can be seen from

Figure 4.5, the fused Cmages have less MSE compared to non-fused Cmage,

either sensor Cmage of social Cmage. This is because the Bayesian fusion

utilizes the agreement the event signals from both sources and the Gaussian

Process enhances the signal of event locations given their nearby signals con-

tribute to the confirmation of occurring events.

4.3.4 Effectiveness of Gaussian Process

Sensors sparsity problem is handled by Gaussian Process with σ2
s set to 0.90

and ld set to 0.89. The effectiveness of Gaussian Process for the fusion process

is shown in Figure 4.6, where red line shows the S of fusion without GP and the

blue line is the fusion with GP. For the best matches, the fusion will results

in better performance (lower S) if Gaussian Process is incorporated in the
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fusion process. However, the fusion of some particular combinations performs

better if no GP is applied. A plausible explanation is that the social term

(e.g., “santacon”) is not semantically related to the sensor concept (describing

two different events), so the prediction could not contribute to the fusion.

Figure 4.6: Comparison of Fusion with GP and without GP

4.4 Summary

In this chapter, we present an image-based hybrid fusion framework to fuse

different modalities of the physical sensor and social data, considering both the

event signal strength and their spatial relations. Image-based representations

of different data streams provide not only a better visualization of situations

but also the convenience of manipulation of the event-related sensor and social

signals. The results demonstrate that the fusion strategy can effectively re-

move noise from the data streams, locate the event place and offer situational

semantics details.
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Chapter 5

A Matrix Factorization Based

Framework for Fusion of Physical

and Social Sensors

5.1 Overview

Beyond spatial information that is mainly considered in the fusion strate-

gies discussed in Chapter 4, semantic information, which expresses high-level

human knowledge, also plays an important role in interpreting holistic situa-

tions. When physical sensors offer some signals, for instance, numeric values

of weather conditions or confidence values of particular concepts being detect-

ed by a camera, social sensors’ rich content could usually reflect and explain

why such signals are given. Therefore it is necessary to utilize such implicit

semantics in the fusion of these two sources. This leads to the goal of this

chapter: fusing physical sensor readings with social sensor feeds that considers

spatio-temporal information and semantics simultaneously. However, different

modalities, multiple sources, various spatio-temporal density and approximate

sensing properties of these two types of sensors make the fusion of heteroge-
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neous information a challenging problem.

Fortunately, a fusion of these different data representations could be in-

spired by the works of another emerging area: collaborative filtering [57], where

the numeric ratings given by users to particular items are fused with addition-

al contextual information such as reviews or comments, and the predicting of

missing ratings can be obtained by matrix factorization techniques [99].

We propose an innovative way of combining physical sensors and social

sensors’ spatio-temporal data using matrix factorization. Specifically, given

a time window, we first extract numeric sensor readings from physical sen-

sors (e.g., PSI (Pollutant Standards Index) stations, CCTV Traffic cameras)

and build a matrix where for each time point and location the corresponding

reading is inserted. An illustration image of such situational matrix is shown

in Figure 5.1. Pixels represent concepts confidence values given by physical

Figure 5.1: Spatial Temporal Fusion of Physical and Social sensors.

sensors in different locations from different times. High intensity denotes high

confidence. Word clouds on top are social information collected from the cor-
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responding locations and time stamps. We conduct matrix factorization on

the situation matrix for filtering out the noise of the original physical signals,

while simultaneously we combine the information extracted by social network-

s (Twitter for the current experiment). Such topics are detected from social

sensors with LDA [19]. We applied the designed framework for two situation

awareness tasks:

• Missing Readings Prediction: given a geographic area, physical sensor

distribution can fail to cover some locations. We use our framework to

infer from social sensors the readings in those points. For this task, we

use a dataset of PSI reading of Singapore, as some parts of the country

are far from any meteorological station and people will tweet when PSI

index is extremely high (signifying haze).

• Event Noise Filtering : from a traffic camera, it is possible to monitor

large-scale outdoor events like a parade, marathon or a protest. However,

due to the fixed camera field of view and the limitations of visual concept

detectors, physical signals are extremely noisy. The proposed matrix

factorization can be used for factoring out the noise and hence improve

the results of detection of events.

Comparing with a baseline where only physical sensors are used, experiments

demonstrate that incorporating social sensor information will improve the per-

formance of both the tasks.

The rest of this chapter is organized as follows. Section 5.2 elaborates prob-

lem formalization and fusion algorithm. Section 5.3 gives a statistical evalua-

tion of our method on real-world data as well as qualitative and quantitative

analysis for situation prediction and event filtering. Section 5.4 concludes the

chapter.
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5.2 Methodology

In this section, we elaborate the matrix factorization (MF) based fusion frame-

work. We first state the problem and notations, then describe matrix factoriza-

tion model which could embed social information. Subsequently, we describe

how MF could be used for situation prediction and for handling noise and

conflicting values in the data. The notation we use throughout this chapter is

defined in Table 5.1.

Table 5.1: Matrix Factorization Framework Notation

Symbol Description
N number of locations
M number of timestamp
Sδ situation matrix
Sδij sensor reading extracted at location j for time stamp i

LDr
j social feeds collected from location j within distance of r

Sδ physical sensor stream
Sδ social sensor stream
ti temporal latent vector at time i
lj spatial latent vector at location j
βi temporal bias
βj spatial bias
µ situation matrix average reading
θLDj ,k probability of seeing topic k in location document LDj

φk word distribution for topic k
zLDj ,q topic assignment of each word q for a location document LDj

5.2.1 Matrix Factorization Based Fusion Framework

Problem Statement and Notations

Physical Information-First Modality : we consider the situation as

the set of observations from a collection of physical sensors. Formally, each

observation includes physical sensor reading signals as well as spatio-temporal

information. Suppose we have a temporal window δ, N physical sensors from

N locations j = {1, ..., N} respectively, given their observations in M time
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stamps i = {1, ...,M}, the situation can be defined by a situation-matrix

Sδ ∈ RM×N where Sδij represents the reading extracted from the sensor situated

at location j for time stamp i. We focus on situations where some readings

may be missing (e.g., in some locations there are no physical sensors, or for

some time one or more sensors can be faulty) and where data is highly affected

from noise or conflict readings (due to the nature and collocation of sensors).

Social Information-Second Modality : a location is often associated

with geo-tagged social information (e.g., Tweets, Facebook posts, or Flick-

r images from the location). We denote the social information as Sδ =

{LDδ,r
1 , ..., LDδ,r

N }. During δ, LDr
j is a set containing the social feeds col-

lected from a geographical circle with radius r centered at location j. Given

a radius r, we name LD “location document” and LDj = {p1, ...pk} are the

set of geo-tagged records (e.g., a Twitter tweet or a Facebook post) collected

from social media, where one record pk = {w1, ..., wr} contains a set of words

w ∈ D.

Problem Statement : the fusion problem can be formalized in line with

the intuition that the goal is to find a combination of the two modalities that

is able to produce better performance on a certain task compared to using the

two sources individually.

Given physical sensor stream Sδ, social sensor stream Sδ and a performance

evaluation function performance for a specific task, the goal of the fusion

problem is to find a fusion function f such that

performance(f(Sδ,Sδ)) > performance(Sδ)

For the rest of this chapter , δ is omitted.
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5.2.2 MF on Physical Signals: Basic Model

We propose to model the fusion function f as a factorization of the matrix

S. Matrix factorization is the state-of-the-art method that is widely used in

recommendation systems (RS) for filling missing ratings in a user-item matrix.

Taking inspiration from this approach, we utilize it to find latent relations

between temporal and spatial responses on situations or occurring events by

factorizing the situation matrix. Specifically, we use matrix factorization to

map time and location to a K-dimension joint space, where each time point

i and location j are associated with latent vectors ti, lj ∈ RK respectively.

Matrix factorization approach seeks to approximate the situation matrix S by

a multiplication of K-rank factors S ≈ T>L , where T = [t1, ..., tm] ∈ RK×M

and L = [l1, ..., ln] ∈ RK×N . Formally, the predicted situation signals at

location l at time t is equal to the inner product of the corresponding spatial

and temporal latent vectors:

ŝij = t>i lj + µ+ βi + βj (5.1)

where βi and βj are bias terms regarding to time i and location j respectively,

and µ is the overall average reading. Here the observation of physical sensor is

broken down into four components: latent features of time stamps and loca-

tions, global average, time bias and location bias. The objective is to compute

the parameters Γ̂ = {µ, βi, βj, ti, lj} by minimizing the following regularized

squared error on the set of situation signals, denoted by Sphy.

Sphy =
∑

(i,j)∈K

(Sij − ŝij)2 + Ω(Γ) (5.2)

where Ω(Γ) = λreg(‖ti‖2+‖lj‖2+βi
2+βj

2) is regularization function to control

over-fitting, and K is the set of time and location pairs for which Sij is used

for training set. This formulation is based on the assumption that similar
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locations will have similar readings for similar time-stamps, where similarity

is based on the situation matrix.

5.2.3 MF incorporating Social Signals: Latent Topics

When a physical event is happening, there are usually social discussions or

on-the-spot posts generated by people in a variety of social media platform.

Therefore a location can be easily associated with social information which

could implicitly indicate events and offer an explanation of the situations.

Looking at the social feeds, we are not only able to obtain the semantic ex-

planation of physical sensor signals, but also to establish the relation between

physical readings and social feeds. Location situations (i.e., emerging top-

ics) are hidden in local social feeds and can be represented by semantically

associated information such as topic modelling or sentiment analysis.

We use Latent Dirichlet Allocation (LDA) to uncovers hidden dimensions

in the social information of a particular location, which could then be in line

with the spatial latent vector of that location. Specifically, we model LDA to

associate location document LD with a K-dimension topic distribution θLD,

each dimension of which denotes the fraction of words in LD that discuss

each of the K topics. We denote θLDj ,k as the probability of seeing topic k in

location document LDj. LDA models each topic k with word distribution φk,

which encodes the probability a particular word is used in that topic, which

is drawn from the Dirichlet distribution. The topic assignment of each word q

for a location document LDj is denoted as zLDj ,q. Therefore, the likelihood of

seeing the whole social information S is the multiplication of word distribution

for each topic φk and the topic distribution for each location document LDj

across all the locations:

p(S|Θ, z) =
∏
j

NLDj∏
q=1

θLDj ,zLDj,q
φzLDj,q

,wLDj,q
(5.3)
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where Θ = {θ, φ} and wLDj ,q is the qth word in location document LDj. Pa-

rameters relations are shown in Figure 5.2. Our idea is that during the matrix

Figure 5.2: Parameters Relationship between Physical and Social Signals

factorization the temporal response (time latent feature ti) not only relates to

the spatial latent feature (lj), but also relate to the topic distribution θLDj
for

that location. Therefore, we fuse the physical sensor information and social

sensor information with a goal of fitting the situation matrix S from physical

sensor readings and simultaneously maximizing the likelihood of seeing S be-

ing generated by the estimated LDA model. To achieve this we minimize the

following objective function:

f(S,S|Γ,Θ, z) = Sphy − λsocialp(S|θ, φ, z) (5.4)

For each location the latent features and topic distributions are aligned with

the following equation:

θj,f =
exp(klj,f )∑
f exp(klj,f )

(5.5)

This loss function fuses both physical and social information in a unified model,

and λsocial is the parameter to tune the weight of social information. Note that
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we implicitly assume that emerging situations will attract people’s attention,

resulting in a strong correlation between the topics and the physical sensor

readings. This assumption will be proved in the experiment section.

5.2.4 Situation Prediction for Missing Readings

As discussed, the spatio-temporal density is different between these two sources.

Physical sensors have geographically sparser readings than social sensors, which

will result in a situation where there is social information in some locations

but no physical sensors at all. We can exploit social information for predicting

the readings for such uncovered locations. This is similar to a “cold-start”

problem in the recommendation system, which cannot be effectively solved by

traditional matrix factorization. To this end, we modify the model by taking

account of the social information even if there are no readings. In details,

among the set of < timestamp, location, readings > triples used for training

the model, a fraction will have no reading. For this reason, whenever the loss

needs to be computed for the actual parameters we only consider the complete

triples, because the difference between the reading and the prediction should

be computed in order to perform gradient descent and update the parameters.

However, if a location has no readings, the corresponding document which is

built from social sensors will affect the latent feature based on equation 5.5.

When applying the framework for such scenarios the loss function is also

modified in:

Sphy =
∑

(i,j)∈K

(Sij − ŝij − βj)2 + λreg(‖ti‖2 + ‖lj‖2) (5.6)

This means that we don’t model biases for locations. The reason is that

unlike locations with readings, uncovered locations will always have zero biases.

Hence even for two locations having similar latent features, the bias difference
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will diminish their similarities, generating different reconstructed readings.

5.2.5 Handling Data Noise and Conflicts

Even if MF can result in large performance for very sparse matrices, a limita-

tion is that it is highly sensitive to noise. Since we are dealing with physical

sensor data, the data could be very noisy for a variety of reasons such sensor

failure, environment change and so on. In addition, sensors may have conflict-

ing readings due to their false positive or false negative sensing. In order to

filter out the noise, we incorporate the temporal pattern of social information

and content similarity into our framework before doing MF.

Sub-sampling using Social Content Similarity: As values are sig-

nificantly affected by noise, traditional factorization approach is not directly

applicable to such input. Such a noisy input will result in the latent represen-

tations of locations and times to equally fit the correct and incorrect entries.

Hence, before factorizing the situation matrix a sub-sampling is performed in

order to decide which observations should be used for training. Sub-sampling

consists of defining the set K in equation 5.2, in other words selecting which

observations Sij to use during MF.

Intuitively, the sub-sampling should remove entries from the situation ma-

trix minimizing conflicting signals. Locations that are geographically close

to each other are highly likely to share similar topic distribution since people

could post similar words in a small area, especially when events are happening.

If one or more of such sensors is faulty or for other reason is not able to cap-

ture the reason that causes people to talk about a particular topic, there will

be conflicting data for sensor readings, resulting in a weaker correlation be-

tween the two modalities. Sub-sampling is designed in order to detect similar

situations and solve the conflicts.

How the situation matrix is sub-sampled is described in details in the
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Figure 5.3: Clustering for Sub-sampling: cluster 2 contains locations where social
sensors share a particular topic, while the leftmost location is assigned to cluster
1, as topics are different

following. Locations are clustered based on their surrounding social content

similarity, that is estimated for each location by the social signals. Specifically,

LDA topic modelling is applied on LDj for each location j, extracting the

topics distribution for each location document. The number of topics can be

empirically set. For each topic, a cluster of locations is created, where the

topic index of the largest response is considered for assigning a location to a

cluster. Figure 5.3 shows an example of how two locations are associated to

two different clusters. In order to distinguish when two locations in the same

clusters have conflicting readings, a smoothing filter with a Hanning window is

applied, resulting in a smooth signal. After that, within each cluster, if there

is at least one location of which readings are larger then T for a sufficient

time interval, the cluster will be marked as containing conflicting readings. In

such cases, any reading lower than T will be omitted from the location for the

whole temporal window since our framework is able to reconstruct the missing

readings based on social sensors.

Physical Signal Correction using Social Impulse Pattern: When a

large-scale event is happening, it can be detected not only by physical sensors
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but can also be reflected by social signals. Many features could be extracted

from social sensors to detect events [113, 121]. In order to avoid taking false

alarm values from physical sensors for the training set, we correct physical

signals by incorporating social information temporal pattern. Specifically, we

give each Sij a event confidence weight cij ∈ [0, 1] of it original values. The

event confidence values are derived from the more or less abrupt change in the

number of social information at the same location j, and is calculated by:

cij =

∣∣∣∣∣Ω(LDjδ)− 1

ND

ND∑
d=1

Ω(LDjδd)

∣∣∣∣∣ (5.7)

where LDjδd is the location document in other days during the same time

window δ, and function Ω counts the total number of records in the location

document. In such case, the term Sij−ŝij in equation 6 will change to cijSij−ŝij
High values of cij will have no big impact on Sij, while low values will regularize

false alarms from physical sensor readings. The underlying assumption is more

posts will be generated in social media when abnormal situations are occurring.

5.3 Experiments

In this section, we evaluate our proposed fusion method for different tasks:

spatio-temporal situation prediction and event detection. We first introduce

two real-world datasets and report experimental set-ups and data cleaning

procedure. After that, we analyze the correlation between physical sensors

and social sensors. Finally, we demonstrate how fusing physical sensor data

with social sensor data can result in better performance in these tasks.
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5.3.1 Datasets

SG Haze Data: we crawled Historical PSI Readings from Singapore National

Environment Agency1 for analyzing haze-related data. The data are collected

from 5 stations2 in corresponding five districts of Singapore, and span from

3 weeks: 1st-7th, 12th-19th August when there was no haze in Singapore,

and 22nd-29th September when there were severe PSI values. Meanwhile, we

collect geo-tagged tweets in Singapore during the same temporal window. We

will make this dataset available upon request. For each week we focus on

the meteorological situation for seven locations. A more clear visualization

is shown in Figure 5.4. We choose three (l 1, l 3 and l 5) of these locations

and leave the other four for prediction task. The PSI readings rate is one per

hour and we average consecutive three hours (starting at 1 am) for each time

stamp. 7 days of readings will result in 56 (24/3 × 7) rows. Thus, we form a

56 × 21 PSI Event Matrix where each line represents PSI readings of a 3 hours

temporal window and the columns denote 7 locations in 3 weeks. Note that

we treat locations of different weeks as different locations; this is valid since

we PSI readings are different from week to week for the same locations. With

this representation, we simulate a scenario with a larger number of sensors

with geographically diverse readings. The PSI situation matrix is shown in

Figure 5.5.

NYC Traffic Data: we used the dataset shared by the authors of work [115],

which contains continuous image snapshots from 149 CCTV traffic cameras

across Manhattan, New York City and geo-tagged tweets. Each tweet contains

the text content, the time when it was posted and the geographical coordi-

nates (in the form of latitude and longitude). This data set contains dozens of

events in various types including protests, festivals, parades, marathons and

1http://www.nea.gov.sg/anti-pollution-radiation-protection/air-pollution-
control/psi/historical-psi-readings

2http://aqicn.org/map/singapore/
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Figure 5.4: Haze Data Selection

Figure 5.5: Haze Situation Matrix

etc. Different concepts detectors (e.g., parade, people marching, crowd, car

etc) are applied to the images, resulting in concept confidence value (ranging

from 0 to 1) in each spatial-temporal unit. For our experiments, we chose a

subset of 135 cameras and selected a temporal window from 3 pm and 4 pm,

13th December 2014, in order to detect the large-scale “Millions March NYC”

protest event 3.

Tweets Cleaning: in order to effectively apply topic modelling over texts,

we need a clean tweet without non-standard tokens such as URLs, emojis, e-

3http://www.millionsmarchnyc.org/
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moticons or slang words. This requires pre-processing tasks such as tokenizing

and normalizing to be performed reliably. However, due to the informal lan-

guage, spacing errors, punctuation errors, typos, etc. (e.g., “Matchball...cant

believe it!!! :-))) #sg50 http://< url >”), off-the-shelf solutions perform poor-

ly on tweets for these tasks. We therefore implemented a text preprocessing

pipeline optimized to handle informal writing style of social media messages.

First, we split tweets into words and other parts with a distinct meaning,

meanwhile labelling tokens according to their type (e.g., words, numbers, user

mentions, hashtags, email addresses, URLs, emoticons). Second, we apply our

own normalizer that can normalize the common concept of expressive length-

ening. After this pre-processing, the number of tweets and cleaned words of

each spatio-temporal cell are shown in Table 5.2.

Table 5.2: Tweets Density in Situation Matrix

#tweets #words
#words per
location

SGHaze 19073 178825 8515
NYCTraffic 3335 30127 223

5.3.2 Situation Awareness: Singapore Haze

We performed two experiments in order to evaluate the performance of the

task described in the previous sections and to validate the assumptions of cor-

relations between physical and social. To prove the effectiveness of the fusion,

all the experiments’ performance is analyzed by comparing with a baseline

that consists in using signals from only physical sensors.

Correlations between Physical and Social Sensors:

Our work is based on the assumption that given an occurring spatio-

temporal physical event, the social sensor information gives explanations to

physical sensors readings, which means there is a correlation between the two
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sources. Our first experiment is to prove the existence of this correlation, and

show how it can be measured quantitatively.

We form a dense haze matrix Ehz
56×9 similar to Figure 5.5 without locations

with empty values. Ehz
56×9 is then factorized using the code from [77] into

temporal latent matrix T = [t1, ..., t56]
T ∈ R20×56 and spatial latent matrix

L = [l1, ..., l9] ∈ R20×9. A PSI reading for the element of haze matrix is the

multiplication of corresponding time feature and location feature in the latent

spaces. After a proper tuning of parameters, the dimension of latent factors

is set to 20 and the regularizers λreg and λsocial are set to 0.1 and 0 (meaning

tweets are not considered) respectively. This is because only a high number

can represent the topic diversity in the tweets.

During the factorization, the proportion of training, validation and test set

is 80%, 10% and 10% respectively. After factorization, we measure the simi-

larity of two latent factors li, lj using Spearman’s rank correlation coefficient

ρij, which assesses statistical independence between two variables. A high ρij

means there is a high correlation between location i and j in terms of latent

features. We consider all the tweets posted around locations as a bag of words

for the location and incorporate tweets LDA in the matrix factorization. Af-

ter this, all the spatial latent factors are embedded with topics information

from social sensors. We examine how such social embedded latent factors can

reflect better representation for original PSI readings. To do this, we compute

ρpsiij for all locations combinations (9 locations generating 36 pairs) in terms

of PSI readings and take them as the ground truth correlations between lo-

cations. Similarly, we compute ρij for all locations combinations in terms of

latent factors with and without considering tweets LDA, denoted as ρlij and

ρl+twij respectively. For each locations pairs (e.g., l 1, l 3), we calculate Dist(ρlij

, ρpsiij ) and Dist(ρl+twij , ρpsiij ). If there is correlation between tweets and PSI

readings, the Dist(latentLDA, PSI) is supposed to be smaller than Dist(latent,

PSI). Figure 5.6 shows these two ρij distances for all the locations pairs.
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Figure 5.6: Location Pair Correlations Comparison of Standard Latent Vector and
Social Embedded Latent Vector

As can be seen, in most of the locations pairs, incorporating tweets LDA

in MF results in smaller distance to PSI readings in terms of the correlations

between locations. This suggests that social sensors’ contribution in describing

physical sensor signals. Moreover, according to the ground truth, we catego-

rize the location pairs into 3 clusters with regarding if the locations in each

pair both observe events (yellow segments), neither observe events (purple seg-

ments), or only one observes events (green segments). We calculate for each

category, the number of pairs where tweets incorporated ρl+twij is closer to the

ground truth than ρlij. Table 5.3 shows the percentage of pairs for the three

categories.

Table 5.3: Number of Location Pairs Where Tweets Having Better Explanation in
Different Categories

Both
Observe Event

Neither
Observe Event

Only One
Observes Event

#Location Pairs 3 15 13
#Better Correlation 3 12 6
Percentage 100% 80% 46.15%

It is shown that, in the first category, ρl+twij is better than ρlij in all location

pairs and, closer to the ground truth in 80% of pairs; while in the third catego-

ry, ρl+twij is better for 64.16 % of the location pairs. This implies that there is a

strong correlation between social sensor and physical sensor in the place where

events are occurring, and the tweets are good at describing reasons difference
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in event and non-event physical signals of different locations. However, for the

places where no events are happening, social information has less ability to

explain why there are no event signals. This is due to the diversity of content

in tweets, especially in the places where any kinds of topics could be discussed.

Spatio-Temporal Situation Prediction:

One of the main strengths of the matrix factorization framework is that

it is able to infer from social sensors the readings for locations which are not

covered by physical sensors, provided the existence of a correlation between

the two modalities, which is shown in the previous experiment.

The following experiments consist of applying the MF framework on the

entire dataset, comprehending for locations without readings. We choose to

use 19 as the number of dimension for latent vectors and used the experimental

setting as shown in Table 5.4.

Table 5.4: Experimental Setting for Situation Prediction

latentReg lambda numTopics
Physical + Social 0.001 10 13
Physical Only (baseline) 0.1 0 19

What we expect is that for such locations high PSI readings will be predict-

ed hours when people tweeted about haze. Providing a quantitative evaluation

is not trivial in this case because a ground truth is not available for such miss-

ing locations. For this reason, we both provide a qualitative analysis of results

and a root mean square error on a hand-built reasonable ground truth.

Figures 5.7(a) and 5.7(b) show the predictions for PSI readings obtained

using only physical sensors (baseline) and both the modalities respectively.

This qualitative analysis confirms that using only physical sensors the frame-

work is not able to predict the situation in uncovered locations: such values

can be inferred only from the time biases learned during the factorization.

On the contrary, adding social information in the framework allows to learn
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semantically meaningful latent features for the locations, and the similarities

of topics between different locations help predicting expected responses for

the locations without physical readings. As can be seen from the figure, for

the first week (columns from 1 to 7) the temporal trend of PSI readings for

uncovered locations is similar to the others. However, in the other two weeks

(remaining columns) it is easy to notice that for two day segments the readings

are mistakenly predicted as large PSI observations (columns 11 and 18). A

possible explanation for those false positives is that the topic (or topics) that

were associated by LDA to “haze” contained also terms that were accidentally

contained in the tweets observed in those locations and weeks.

(a) Only Physical Sensor (b) Physical + Social Sensor

Figure 5.7: Comparison of Prediction using Different Sources

For the quantitative evaluation, a hand-built ground truth is created as-

suming that PSI values are approximately constant among nearby locations in

a three hours temporal window. In this evaluation, we want to measure how

much for an uncovered location the predicted value is similar to the average

of the available nearby physical readings. This ground truth matrix is then

compared with the reconstructed matrix after factorization and RMSE (shown

in Table 5.5) is computed over the whole matrix; It is shown that MF of fused

with social performs much better than that of using only physical readings.

This is because social information help to constrain the MF in tuning social
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Table 5.5: RMSE of Reconstructed Matrix

RMSE
Physical 40.84
Physical + Social 25.87

embedded latent factors, for the locations with similar physical readings.

3-Fold Cross Validation:

The validation of prediction above is demonstrated in a 3-fold cross-validation

where in each fold, we use two of the three locations with data to predict the

situation of the third one and compare the predicted physical sensor readings

with ground truth. From each location, we filter out the words that appear

frequent in the past (e.g., locations names, stop words), so as to make the

location documents more representative for the location. The comparison of

using only physical readings and incorporating tweets are shown in Table 5.6

in terms of MSE with ground truth

Table 5.6: 3-Fold Cross Validation Measured by MSE

Loc 1 Loc 2 Loc 3
noTweets 51.38 49.45 57.73
withTweets 42.48 26.80 22.86

As can be seen, fusing social information gives us results representing the

truth. This is because the topics of social information from a particular loca-

tion can generally indicate the reason of the physical sensor readings in that

place.

Topic Discovering:

Even if matrix factorization ignores any semantics that words may have,

visualizing topics help to have an intuition on the results. For this reason,

some top words of four topics after LDA after matrix factorization are here

listed:

1. hazy, hari, haze, gardens, uffc
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2. internationalcosplaydaysingapore, icds, sghaze

3. the, and, with, for

4. iphone, airport, changi, terminal

Topic number 4 contains mostly terms related to Singapore airport and topic

number 3 clusters stop-words, while the first two topics contain words related

to haze. We observe that the latent features of locations in the first week are

likely to have much a stronger response for topics 1 and 2 than that of the

other two weeks. This is because during haze days many people tweeted about

haze in specific locations, hence both in a covered and uncovered location, the

corresponding latent features will then be shaped to be similar, resulting in

similar predictions.

5.3.3 Noise Filtering: NYC Large Scale Events

Unlike the clear PSI reading in SG Haze, NYC Traffic Data contain a huge

number of noise in readings from cameras due to the unstable status of cameras

(such as under maintenance, covered by raindrops). For this reason, we need

to build a testing set from external knowledge. We manually set a binary

label for every spatio-temporal point in the matrix. A binary ground truth

matrix was built where values were set as positive if an event was observed

in the video frames or if tweets around a locations contained a large enough

number of occurrences of specific keywords, which indicated that the event

was effectively there (e.g., “I am at the millionsmarchnyc protest”). Two

evaluations are performed: the first is based on RMSE and the second uses

metrics from classification tasks.

Evaluation with Root Mean Squared Error:

RMSE based evaluation will measure how much combining physical and so-

cial sensors reduces the noise, compared with cameras readings only. Instead

of performing RMSE on the entire matrix we compute two different errors.
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A first one considers only the locations where positive labels were put during

ground truth creation. This measurement (RMSEpos) will evaluate the contri-

bution of social sensors in confirming positive readings. Another error is then

computed for locations that were labelled as negative in the ground truth, but

only for those who have significantly different tweets from positive ones. The

motivation is that if a location shares similar tweets with another for which

we are sure the event took place, then it becomes difficult to label it either

as positive or negative. We then exclude such locations from our evaluation,

considering only those for which we can tell with high confidence that there

was not an event. This second error (RMSEneg) will evaluate if the fusion

is able to remove false positives in the camera readings. To demonstrate the

effectiveness of our fusion model, we conduct our experiment on a large-scale

dataset containing a variety of situations and events happening in New York

City, including “MillionsMarchNYC” (M), “St Patrick’s Day Parade” (S) and

“ColumbusDay Parade” (C). We apply different concept detectors including

“people marching” and “Crowd” etc to obtain the physical sensor readings.

Results of these events of different times are given in Table 5.7.

Table 5.7: RMSE of Different Experiments

RMSEpos RMSEneg
Events
&Times

physical
only

physical
+social

physical
only

physical
+social

M14-15 0.17 0.16 0.16 0.06
M15-16 0.75 0.51 0.14 0.04
M16-17 0.72 0.59 0.20 0.15
S11-12 0.61 0.47 1.35 0.09
S12-13 0.61 0.57 0.11 0.03
S13-14 0.63 054 0.15 0.06
S14-15 0.67 0.76 0.16 0.13
S15-16 0.71 0.7 0.15 0.1
C12-13 0.76 0.67 0.11 0.15

The table shows in most cases, fusion of physical and social sensor out-
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performs the baseline of using only physical sensors for filtering noise by the

measurements of RMSE. One exception happens in “St Patricks Day Parade”

14-15. A plausible explanation for our observations is that in one of the lo-

cations (5 Avenue at 72 Street) there are also significant values from cameras

telling about “people marching”. However, that location (a relatively wild

place outside the central park) lacks tweets that are able to correct the noise,

hence results in a large prediction error comparing with ground truth. It is

also worth noticing that the different is less significant in the positive ground

truth than that of negative. This is because the sub-sampling step takes ad-

vantages of the temporal change of tweets numbers to correct false alarms in

the camera readings.

Event Classification Evaluation:

In the previous evaluation, the output is not binary like the ground truth,

hence it is useful for comparing the performance of the fusion with the base-

line, but it is not able to tell how much a result is good independently. For this

reason, we translated the noise filtering problem in a classification one, where

the goal is to classify spatio-temporal points into positive or negative instances

(according to if the protest is happening). In order to get a binary output we

define a threshold in [0, 1] and compute precision, recall and F1 score on the

entire ground truth matrix. Figure 5.8 shows the results for different thresh-

olds. As can be seen, social sensors significantly improve the performance in

all the metrics: F1, Precision, and Recall. A threshold of 0.55 will produce a

F1 of 0.76.

Table 5.8: F1 Comparison with Previous Work and Baseline

Baseline Work [115] Our Result
F1 Score 0.11 0.74 0.76

We compare our result with that shown in Chapter 3. The baseline is using

the threshold of 0.5, and the work in Chapter 3 tunes this threshold to 0.07 for
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(a) Precision (b) Recall

(c) F1

Figure 5.8: Evaluation Comparison between Incorporating Tweets and Without
Tweets

2 only cameras. Table 5.8 shows that without special tuning of the threshold

for each individual camera, a global threshold for the cameras outperforms

their results in terms of F1 score.

5.4 Discussion and Summary

In this chapter, we proposed an innovative way of fusing spatial and temporal

physical and social information in a unified matrix factorization based frame-

work to handle multimodal and multi-source analysis. Our framework focuses
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on handling missing readings, noise and conflicting data. We applied it for

situation awareness and event filtering on two real-world datasets and proved

the correlation between these two modalities. Experiments showed that by

incorporating social information the performance of both tasks can be largely

improved. Compared with the Cmage based fusion method proposed in Chap-

ter 4, this method doesn’t require a dense network of physical sensors where

the Gaussian Process can result in a better prediction. Besides, Cmage based

fusion encloses a social term selection process, where only event-related social

terms are used to fuse with physical sensors. This requires a prior knowledge

of the events and therefore the method is suitable for planned events. Instead,

the MF based fusion method in this chapter doesn’t require preselected terms

in the fusion process. They are implicitly fused with physical sensors read-

ings. The method tries to automatically predict the information using the

correlation between physical sensor signals and social terms by incorporating

topic distribution in the social network. So this method could be applied when

handling unplanned events such as the “haze situation” example shown in the

experiment.
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Conclusion

6.1 Summary

In this thesis, we have investigated a new and emerging research topic: fusing

physical sensors with social sensors for situation awareness. We conducted a

thorough study on how information from these two sources of different modal-

ities can be combined in order to provide humans a better situation under-

standing or prediction. Research questions raised in Chapter 1 are answered

accordingly: i) we designed a multilayer process framework (Chapter 3) to

integrate heterogeneous data from both physical and social sensor data; ii)

the multi-layer tweeting camera framework contains concept detection and

data analysis layers to extract meaningful information from both sources; iii)

noise and uncertainty in each individual sensor data are handled via Cmage

data representation and the hybrid fusion techniques discussed in Chapter 4;

iv) multimodal complementary information is utilized through Matrix Fac-

torization techniques (Chapter 5) to suppress the sensing noise for situation

understanding; v) the Matrix Factorization technique is shown to be suitable

for fusing spatio-temporal-semantic data.

First, we designed a multi-layer tweeting camera framework that integrates
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physical sensor feeds from CCTV Traffic cameras with social sensor infor-

mation from Twitter tweets, to detect various concepts related to occurring

events. Specifically, we considered visual concepts detected from images cap-

tured by cameras as “camera tweets” that are sent by cameras. They are

represented by a unified data structure probabilistic spatio-temporal (PST)

and aggregated into a concept-based image (Cmage) for better visualization

of the overall situation in a geographical region in the real world. We defined a

set of operators and analytic functions in a query-based mechanism to monitor

the pattern or change of these PST data, so as to discover abnormal situation

from evolving physical sensor signals. These physical signals are then explained

by geo-tagged surrounding tweets that give higher level semantic meanings for

the physical sensor readings. We demonstrated this conceptual framework by

a smart sensing device “tweeting camera”. Its sensing, analyzing and learning

ability shows that it is interesting and promising to make physical sensors join

human social networks and meanwhile bring humans in the loop for situation

understanding.

Second, we extended the conceptual Cmage representation proposed in the

first work and designed a hybrid fusion method that handles the sparsity and

noise of sensor information, the heterogeneity of physical and social signals,

and the influence of signals based on different geographical locations. Specif-

ically, we applied the Gaussian Process model to interpolate event situation

where there are no physical sensors, using nearby sensor readings. Also, we

used Bayesian approach to eliminate noise from each source and enhance the

detection of events leveraging the agreement of these two sources. The fusion

results are evaluated according to the semantics of fused Cmage (i.e. the con-

cept of the Cmage) which could be to understand the relationship of different

concepts for a specific event.

Third, we proposed a unified fusion technique based on matrix factoriza-

tion. We argue that matrix factorization used in the recommendation systems
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area is well suited to our problem that considers physical sensors reading in

numerical format and social sensor feeds that are in symbolic representation.

When we formalize the physical sensor readings in a temporal-spatial event

matrix, the surrounding tweets implicitly gives the reason of physical readings,

which could be aligned to specific topics for particular locations during factor-

ization. Our conducted experiments found the correlation between these two

sources, which suggests that fusing them can lead to a better performance in

noise reduction, event detection, as well as situation prediction.

To sum up, the works in this thesis investigate the fusion of these two

sources from different perspectives, and the experiments demonstrate the fea-

sibility and efficiency of complementary sensors information.

6.2 Future Work

There are several interesting directions that are worth exploring for the future

work:

• To extend the multi-layer tweeting camera framework, we plan to inte-

grate information from social media sensors that include trend analysis

and topic mining, to improve the quality of the camera tweets. By min-

ing the main topics and monitoring the evolving of specific topics, we can

be more precise in predicting or correcting the noise given by physical

sensors. In addition, we also would explore the possibility of creating an

interactive framework that allows for the use of general user as well as

the integration of other types of sensors into the framework. More com-

prehensive set of concept detectors including face detectors and image

caption labellers can also be used in the first layer of the framework.

• In the hybrid fusion method, we could investigate more sophisticated

ways to reflect the relatedness between concepts and terms. The relat-
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edness of different visual concepts or social terms could be utilized in the

fusion process in order to result in a cleaner situation Cmage. One way

to exploit the semantic relatedness is to consider the ontology from var-

ious lexical databases, e.g., WordNet [82]. Besides, fusion results might

also give a guide on building a dynamic ontology for new situations or

events. We envision our system to provide detailed information about so

far unknown events, i.e., to automatically find patterns and correlations

across semantics. The main challenge here is to calculate the correct re-

latedness between unknown terms (e.g., new popular hashtags in tweets)

existing terms and concepts.

• For the fusion based on matrix factorization, as currently we only consid-

er situation prediction in the spatial dimension, it would be interesting to

consider the temporal evolving factors in order to make short-term pre-

dictions of ongoing situations. Comparing with other matrix factoriza-

tion methods such as [93] is also worth exploring. Moreover, substituting

topic distribution with other text features involving, for example, seman-

tics or sentiments, is also a direction worth exploring. It is also worth

considering more diverse datasets (e.g., YouTube, Flickr, Instagram) for

more events to further prove the correlation of these two sources and also

apply our methods to other areas such as semantic analysis, sentimen-

t analysis or stock analysis that has similar properties as our problem

(i.e. spatio-temporal dynamics, numeric and symbolic readings) At last,

how to make our detection and prediction process in real-time is also an

important direction that needs further investigation.
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