56,469 research outputs found

    Plant genetic resources for agriculture, plant breeding, and biotechnology: Experiences from Cameroon, Kenya, the Philippines, and Venezuela

    Get PDF
    "Local farming communities throughout the world face binding productivity constraints, diverse nutritional needs, environmental concerns, and significant economic and financial pressures. Developing countries address these challenges in different ways, including public and private sector investments in plant breeding and other modern tools for genetic crop improvement. In order to measure the impact of any technology and prioritize investments, we must assess the relevant resources, human capacity, clusters, networks and linkages, as well as the institutions performing technological research and development, and the rate of farmer adoption. However, such measures have not been recently assessed, in part due to the lack of complete standardized information on public plant breeding and biotechnology research in developing countries. To tackle this void, the Food and Agricultural Organization of the United Nations (FAO), in consultation with the International Food Policy Institute (IFPRI) and other organizations, designed a plant breeding and biotechnology capacity survey for implementation by FAO consultants in 100 developing countries. IFPRI, in collaboration with FAO and national experts contracted by FAO to complete in-country surveys, identified and analyzed plant breeding and biotechnology programs in four developing countries: Cameroon, Kenya, the Philippines, and Venezuela. Here, we use an innovation systems framework to examine the investments in human and financial resources and the distribution of resources among the different programs, as well as the capacity and policy development for agricultural research in the four selected countries. Based on our findings, we present recommendations to help sustain and increase the efficiency of publicly- and privately-funded plant breeding programs, while maximizing the use of genetic resources and developing opportunities for GM crop production. Policy makers, private sector breeders, and other stakeholders can use this information to prioritize investments, consider product advancement, and assess the relative magnitude of the potential risks and benefits of their investments." from Author's Abstractplant breeding, biotechnology, public research, Funding, Innovation systems, Capacity building, Biosafety,

    Analysis on the evolution and governance of the biotechnology industry of China

    Get PDF
    The past twenty years have witnessed the high-speed growth of China’s biotechnology industry, and this presents an excellent opportunity to examine the changes that have taken place, especially, to carry out overall evaluation and governance analysis from the perspective of technology policies. Although China’s biotechnology industry has achieved tremendous extension both in scale and structure, the strengths it gained from basic research have been significantly weakened by commercialization. This has resulted in the comparatively limited scale of the whole industry, innovation-lacking products, poor output from research and development and scarcity of industrial resources. A large range of literature regarding China’s biotechnology industry attributes these outcomes to vague and even inappropriate governance, findings supported mainly by analyses based on the linear model of impact of government policies on industrial development. In these analyses, government, enterprises and companies as well as R&D organizations are either put on the opposite poles or in a straight line. After examining the nature of China’s biotechnology industry, and in particular the dynamic procedures in research and development, the authors of this paper argue that besides government, enterprises and R&D organizations, a diverse array of factors should be taken into account as we tackle issues emerging in understanding the development of China’s biotechnology industry. Furthermore, these factors, human or nonhuman, should not be arranged as opposing poles or linearly connected points on a straight line. They are in fact all knitted in networks and act as both knitters and knots. China’s biotechnology industry gains its strength to develop and evolve from these networks, thus its governance must be aimed at improving their stability and quality. Although the main disciplinary perspectives of this research are historical and sociological (including identification of the three development stages of biotechnology in China since 1978 to present days), a large number of concepts and ideas from management studies as well as an interdisciplinary approach are also incorporated into the analysis. The main model used in this research is Actor Network Theory, which is employed as a basic theoretical frame. From this starting point the authors attempt to make a closer examination of China’s biotechnology industry both at the level of technology research and development and at the level of commercialization. The modeling process in this research can be regarded as an attempt to explore the social construction of China’s biotechnology industry. The paper reveals how China’s biotechnology industry develops in the form of networks within the country’s social context and what kinds of relationships exist among the relevant factors; therefore, providing guiding insights for improving the governance of China’s biotechnology industry both in policy and management

    How can history of science matter to scientists?

    Get PDF
    History of science has developed into a methodologically diverse discipline, adding greatly to our understanding of the interplay between science, society, and culture. Along the way, one original impetus for the then newly emerging discipline —- what George Sarton called the perspective “from the point of view of the scientist” -— dropped out of fashion. This essay shows, by means of several examples, that reclaiming this interaction between science and history of science yields interesting perspectives and new insights for both science and history of science. The authors consequently suggest that historians of science also adopt this perspective as part of their methodological repertoire

    The benefits from publicly funded research

    Get PDF
    Research, Technological change, Government Policy

    Knowledge Spillover Agents and Regional Development

    Get PDF
    It is widely recognised that knowledge and highly skilled individuals as "carriers" of knowledge (i.e. knowledge spillover agents) play a key role in impelling the development and growth of cities and regions. In this paper we discuss the relation between the mobility of talent and knowledge flows. In this context, several issues are examined, including the role of highly skilled labour for regional development, the features that characterise knowledge spillovers through labour mobility, the key factors for attracting and retaining talent as well as the rise of "brain gain" policies. Although the paper deals with highly skilled mobility and migration in general, a particular attention will be paid to flows of (star) scientists.Series: SRE - Discussion Paper

    The Science, Technology, Engineering and Mathematics (stem) programme report

    Get PDF
    • 

    corecore