22 research outputs found

    Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions

    Full text link
    In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and enmities- evolve seeking for social balance, taking into account how similar agents' opinions are. We consider both the case where opinions have one and two dimensions. We find that our dynamics produces the segregation of agents into two cliques, with the opinions of agents in one clique differing from those in the other. Depending on the level of bounded confidence, the dynamics can produce either consensus of opinions within each clique or the coexistence of several opinion clusters in a clique. For the uni-dimensional case, the opinions in one clique are all below the opinions in the other clique, hence defining a "left clique" and a "right clique". In the two-dimensional case, our numerical results suggest that the two cliques are separated by a hyperplane in the opinion space. We also show that the phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the context of politics, we comment about the possible relation of our results to the fragmentation of an ideology and the emergence of new political parties.Comment: 8 figures, PLoS ONE 11(10): e0164323, 201

    Dynamic Social Balance and Convergent Appraisals via Homophily and Influence Mechanisms

    Full text link
    Social balance theory describes allowable and forbidden configurations of the topologies of signed directed social appraisal networks. In this paper, we propose two discrete-time dynamical systems that explain how an appraisal network \textcolor{blue}{converges to} social balance from an initially unbalanced configuration. These two models are based on two different socio-psychological mechanisms respectively: the homophily mechanism and the influence mechanism. Our main theoretical contribution is a comprehensive analysis for both models in three steps. First, we establish the well-posedness and bounded evolution of the interpersonal appraisals. Second, we fully characterize the set of equilibrium points; for both models, each equilibrium network is composed by an arbitrary number of complete subgraphs satisfying structural balance. Third, we establish the equivalence among three distinct properties: non-vanishing appraisals, convergence to all-to-all appraisal networks, and finite-time achievement of social balance. In addition to theoretical analysis, Monte Carlo validations illustrates how the non-vanishing appraisal condition holds for generic initial conditions in both models. Moreover, numerical comparison between the two models indicate that the homophily-based model might be a more universal explanation for the formation of social balance. Finally, adopting the homophily-based model, we present numerical results on the mediation and globalization of local conflicts, the competition for allies, and the asymptotic formation of a single versus two factions

    On the Structural Balance Dynamics Under Perceived Sentiment

    Get PDF
    In this letter, we propose a continuous-time dynamics for social network that represents patterns of both amity and enmity through directed signed graphs. The introduction of discrepancies between true and perceived sentiments gives rise to a non-autonomous system and distinguishes itself from the prior models. We show that for almost all initial configurations, the system will evolve into at most four factions. Under some mild assumptions on the initial conditions, structural balance with at most two factions can be achieved, which extends the previous results for symmetric or normal initial configurations without considering the effect of perceived sentiment

    Signed Network Embedding with Application to Simultaneous Detection of Communities and Anomalies

    Full text link
    Signed networks are frequently observed in real life with additional sign information associated with each edge, yet such information has been largely ignored in existing network models. This paper develops a unified embedding model for signed networks to disentangle the intertwined balance structure and anomaly effect, which can greatly facilitate the downstream analysis, including community detection, anomaly detection, and network inference. The proposed model captures both balance structure and anomaly effect through a low rank plus sparse matrix decomposition, which are jointly estimated via a regularized formulation. Its theoretical guarantees are established in terms of asymptotic consistency and finite-sample probability bounds for network embedding, community detection and anomaly detection. The advantage of the proposed embedding model is also demonstrated through extensive numerical experiments on both synthetic networks and an international relation network.Comment: 24 pages, 4 figures. The appendix containing technical proof is not included, but will be uploaded in the futur

    The structure of gene-gene networks beyond pairwise interactions

    Full text link
    Despite its high and direct impact on nearly all biological processes, the underlying structure of gene-gene interaction networks is investigated so far according to pair connections. To address this, we explore the gene interaction networks of the yeast Saccharomyces cerevisiae beyond pairwise interaction using the structural balance theory (SBT). Specifically, we ask whether essential and nonessential gene interaction networks are structurally balanced. We study triadic interactions in the weighted signed undirected gene networks and observe that balanced and unbalanced triads are over and underrepresented in both networks, thus beautifully in line with the strong notion of balance. Moreover, we note that the energy distribution of triads is significantly different in both essential and nonessential networks compared with the shuffled networks. Yet, this difference is greater in the essential network regarding the frequency as well as the energy of triads. Additionally, results demonstrate that triads in the essential gene network are more interconnected through sharing common links, while in the nonessential network they tend to be isolated. Last but not least, we investigate the contribution of all-length signed walks and its impact on the degree of balance. Our findings reveal that interestingly when considering longer cycles the nonessential gene network is more balanced compared to the essential network.Comment: 16 pages, 5 figures, 4 table
    corecore