55,725 research outputs found

    CS 875: Semantic Web

    Get PDF
    World Wide Web (Web 1.0, or the Web, as we now know it) centers on documents and semistructured data in html, rss, and xml. The next generation Web, also called Web 2.0 and Web 3.0, has already started to emerge. Web 2.0 is about user-generated content, user participation such as through tagging, and social networking. Web 3.0, also called Semantic Web, is about labeling content such that machines can process it more intelligently and humans can exploit it more effectively. These labels or metadata add semantics (meaning) to data, and their formal representation enables powerful reasoning that leads not only to better (semantic) search but also to analysis, discovery, and decision making. Semantic Web is already a rapidly emerging field, with standards, technologies, products, and applications-as well as to excellent job prospects (for MS students) and research opportunities (for PhD students)

    A Semantics-Based Measure of Emoji Similarity

    Get PDF
    Emoji have grown to become one of the most important forms of communication on the web. With its widespread use, measuring the similarity of emoji has become an important problem for contemporary text processing since it lies at the heart of sentiment analysis, search, and interface design tasks. This paper presents a comprehensive analysis of the semantic similarity of emoji through embedding models that are learned over machine-readable emoji meanings in the EmojiNet knowledge base. Using emoji descriptions, emoji sense labels and emoji sense definitions, and with different training corpora obtained from Twitter and Google News, we develop and test multiple embedding models to measure emoji similarity. To evaluate our work, we create a new dataset called EmoSim508, which assigns human-annotated semantic similarity scores to a set of 508 carefully selected emoji pairs. After validation with EmoSim508, we present a real-world use-case of our emoji embedding models using a sentiment analysis task and show that our models outperform the previous best-performing emoji embedding model on this task. The EmoSim508 dataset and our emoji embedding models are publicly released with this paper and can be downloaded from http://emojinet.knoesis.org/.Comment: This paper is accepted at Web Intelligence 2017 as a full paper, In 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). Leipzig, Germany: ACM, 201

    Semantic Web meets Web 2.0 (and vice versa): The Value of the Mundane for the Semantic Web

    No full text
    Web 2.0, not the Semantic Web, has become the face of ā€œthe next generation Webā€ among the tech-literate set, and even among many in the various research communities involved in the Web. Perceptions in these communities of what the Semantic Web is (and who is involved in it) are often misinformed if not misguided. In this paper we identify opportunities for Semantic Web activities to connect with the Web 2.0 community; we explore why this connection is of significant benefit to both groups, and identify how these connections open valuable research opportunities ā€œin the realā€ for the Semantic Web effort

    Constitute: The worldā€™s constitutions to read, search, and compare

    Get PDF
    Constitutional design and redesign is constant. Over the last 200 years, countries have replaced their constitutions an average of every 19 years and some have amended them almost yearly. A basic problem in the drafting of these documents is the search and analysis of model text deployed in other jurisdictions. Traditionally, this process has been ad hoc and the results suboptimal. As a result, drafters generally lack systematic information about the institutional options and choices available to them. In order to address this informational need, the investigators developed a web application, Constitute [online at http://www.constituteproject.org], with the use of semantic technologies. Constitute provides searchable access to the worldā€™s constitutions using the conceptualization, texts, and data developed by the Comparative Constitutions Project. An OWL ontology represents 330 ā€˜ā€˜topicsā€™ā€™ ā€“ e.g. right to health ā€“ with which the investigators have tagged relevant provisions of nearly all constitutions in force as of September of 2013. The tagged texts were then converted to an RDF representation using R2RML mappings and Capsentaā€™s Ultrawrap. The portal implements semantic search features to allow constitutional drafters to read, search, and compare the worldā€™s constitutions. The goal of the project is to improve the efficiency and systemization of constitutional design and, thus, to support the independence and self-reliance of constitutional drafters.Governmen

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Semantic Grounding Strategies for Tagbased Recommender Systems

    Full text link
    Recommender systems usually operate on similarities between recommended items or users. Tag based recommender systems utilize similarities on tags. The tags are however mostly free user entered phrases. Therefore, similarities computed without their semantic groundings might lead to less relevant recommendations. In this paper, we study a semantic grounding used for tag similarity calculus. We show a comprehensive analysis of semantic grounding given by 20 ontologies from different domains. The study besides other things reveals that currently available OWL ontologies are very narrow and the percentage of the similarity expansions is rather small. WordNet scores slightly better as it is broader but not much as it does not support several semantic relationships. Furthermore, the study reveals that even with such number of expansions, the recommendations change considerably.Comment: 13 pages, 5 figure

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    A Formal Context Representation Framework for Network-Enabled Cognition

    No full text
    Network-accessible resources are inherently contextual with respect to the specific situations (e.g., location and default assumptions) in which they are used. Therefore, the explicit conceptualization and representation of contexts is required to address a number of problems in Network- Enabled Cognition (NEC). We propose a context representation framework to address the computational specification of contexts. Our focus is on developing a formal model of context for the unambiguous and effective delivery of data and knowledge, in particular, for enabling forms of automated inference that address contextual differences between agents in a distributed network environment. We identify several components for the conceptualization of contexts within the context representation framework. These include jurisdictions (which can be used to interpret contextual data), semantic assumptions (which highlight the meaning of data), provenance information and inter-context relationships. Finally, we demonstrate the application of the context representation framework in a collaborative military coalition planning scenario. We show how the framework can be used to support the representation of plan-relevant contextual information
    • ā€¦
    corecore