530 research outputs found

    A Semantic Web approach to ontology-based system: integrating, sharing and analysing IoT health and fitness data

    Get PDF
    With the rapid development of fitness industry, Internet of Things (IoT) technology is becoming one of the most popular trends for the health and fitness areas. IoT technologies have revolutionised the fitness and the sport industry by giving users the ability to monitor their health status and keep track of their training sessions. More and more sophisticated wearable devices, fitness trackers, smart watches and health mobile applications will appear in the near future. These systems do collect data non-stop from sensors and upload them to the Cloud. However, from a data-centric perspective the landscape of IoT fitness devices and wellness appliances is characterised by a plethora of representation and serialisation formats. The high heterogeneity of IoT data representations and the lack of common accepted standards, keep data isolated within each single system, preventing users and health professionals from having an integrated view of the various information collected. Moreover, in order to fully exploit the potential of the large amounts of data, it is also necessary to enable advanced analytics over it, thus achieving actionable knowledge. Therefore, due the above situation, the aim of this thesis project is to design and implement an ontology based system to (1) allow data interoperability among heterogeneous IoT fitness and wellness devices, (2) facilitate the integration and the sharing of information and (3) enable advanced analytics over the collected data (Cognitive Computing). The novelty of the proposed solution lies in exploiting Semantic Web technologies to formally describe the meaning of the data collected by the IoT devices and define a common communication strategy for information representation and exchange

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias

    Full text link
    Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance. Additionally, we present a comprehensive empirical study on data generation encompassing vital aspects like bias, diversity, and efficiency, and highlight three key observations: firstly, synthetic datasets generated by simple prompts exhibit significant biases, such as regional bias; secondly, attribute diversity plays a pivotal role in enhancing model performance; lastly, attributed prompts achieve the performance of simple class-conditional prompts while utilizing only 5\% of the querying cost of ChatGPT associated with the latter. We release the generated dataset and used prompts to facilitate future research. The data and code will be available on \url{https://github.com/yueyu1030/AttrPrompt}.Comment: Work in progress. A shorter version is accepted to the ICML DMLR worksho

    An ontology-driven approach for structuring scientific knowledge for predicting treatment adherence behaviour: a case study of tuberculosis in Sub-Saharan African communities.

    Get PDF
    Doctor of Philosophy in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban 2016.Poor adherence to prescribed treatment is a complex phenomenon and has been identified as a major contributor to patients developing drug resistance and failing treatment in sub-Saharan African countries. Treatment adherence behaviour is influenced by diverse personal, cultural and socio-economic factors that may vary drastically between communities in different regions. Computer based predictive models can be used to identify individuals and communities at risk of non-adherence and aid in supporting resource allocation and intervention planning in disease control programs. However, constructing effective predictive models is challenging, and requires detailed expert knowledge to identify factors and determine their influence on treatment adherence in specific communities. While many clinical studies and abstract conceptual models exist in the literature, there is no known concrete, unambiguous and comprehensive computer based conceptual model that categorises factors that influence treatment adherence behaviour. The aim of this research was to develop an ontology-driven approach for structuring knowledge of factors that influence treatment adherence behaviour and for constructing adherence risk prediction models for specific communities. Tuberculosis treatment adherence in sub-Saharan Africa was used as a case study to explore and validate the approach. The approach provides guidance for knowledge acquisition, for building a comprehensive conceptual model, its formalisation into an OWL ontology, and generation of probabilistic risk prediction models. The ontology was evaluated for its comprehensiveness and correctness, and its effectiveness for constructing Bayesian decision networks for predicting adherence risk. The approach introduces a novel knowledge acquisition step that guides the capturing of influencing factors from peer-reviewed clinical studies and the scientific literature. Furthermore, the ontology takes an evidence based approach by explicitly relating each factor to published clinical studies, an important consideration for health practitioners. The approach was shown to be effective in constructing a flexible and extendable ontology and automatically generating the structure of a Bayesian decision network, a crucial step towards automated, computer based prediction of adherence risk for individuals in specific communities

    Digital and Strategic Innovation for Alpine Health Tourism

    Get PDF
    This open access book presents a set of practical tools and collaborative solutions in multi-disciplinary settings to foster the Alpine Space health tourism industry’s innovation and competitiveness. The proposed solutions emerge as the result of the synergy among health, environment, tourism, digital, policy and strategy professionals. The approach underlines the pivotal role of a sustainable and ecomedical use of Alpine natural resources for health tourism destinations, and highlights the need of integrating aspects of natural resources’ healing effects, a shared knowledge of Alpine assets through digital solutions, and frames strategic approaches for the long-term development of the sector. The volume exploits the results of the three-years long EU research project HEALPS 2, which involved several stakeholders from the health tourism, healthcare and sustainable tourism industries. This book is relevant for health tourism destinations and facilities (hotels, clinics, wellness and spa companies), regional and local authorities (policy makers), business support organizations, researchers involved in digital healthcare and geoinformatics

    Digital and Strategic Innovation for Alpine Health Tourism

    Get PDF
    This open access book presents a set of practical tools and collaborative solutions in multi-disciplinary settings to foster the Alpine Space health tourism industry’s innovation and competitiveness. The proposed solutions emerge as the result of the synergy among health, environment, tourism, digital, policy and strategy professionals. The approach underlines the pivotal role of a sustainable and ecomedical use of Alpine natural resources for health tourism destinations, and highlights the need of integrating aspects of natural resources’ healing effects, a shared knowledge of Alpine assets through digital solutions, and frames strategic approaches for the long-term development of the sector. The volume exploits the results of the three-years long EU research project HEALPS 2, which involved several stakeholders from the health tourism, healthcare and sustainable tourism industries. This book is relevant for health tourism destinations and facilities (hotels, clinics, wellness and spa companies), regional and local authorities (policy makers), business support organizations, researchers involved in digital healthcare and geoinformatics

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data

    Digital and Strategic Innovation for Alpine Health Tourism

    Get PDF
    This open access book presents a set of practical tools and collaborative solutions in multi-disciplinary settings to foster the Alpine Space health tourism industry’s innovation and competitiveness. The proposed solutions emerge as the result of the synergy among health, environment, tourism, digital, policy and strategy professionals. The approach underlines the pivotal role of a sustainable and ecomedical use of Alpine natural resources for health tourism destinations, and highlights the need of integrating aspects of natural resources’ healing effects, a shared knowledge of Alpine assets through digital solutions, and frames strategic approaches for the long-term development of the sector. The volume exploits the results of the three-years long EU research project HEALPS 2, which involved several stakeholders from the health tourism, healthcare and sustainable tourism industries. This book is relevant for health tourism destinations and facilities (hotels, clinics, wellness and spa companies), regional and local authorities (policy makers), business support organizations, researchers involved in digital healthcare and geoinformatics
    • …
    corecore