145,839 research outputs found

    Measuring robustness of community structure in complex networks

    Full text link
    The theory of community structure is a powerful tool for real networks, which can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the robustness of community structure is an urgent and important task. In this letter, we employ the critical threshold of resolution parameter in Hamiltonian function, γC\gamma_C, to measure the robustness of a network. According to spectral theory, a rigorous proof shows that the index we proposed is inversely proportional to robustness of community structure. Furthermore, by utilizing the co-evolution model, we provides a new efficient method for computing the value of γC\gamma_C. The research can be applied to broad clustering problems in network analysis and data mining due to its solid mathematical basis and experimental effects.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1303.7434 by other author

    Extracting Graph Topological Information and Users’ Opinion

    Get PDF
    This paper focuses on the role of social relations within social media in the formation of public opinion. We propose to combine the detection of the users’ stance towards BREXIT, carried out by content analysis of Twitter messages, and the exploration of their social relations, by relying on social network analysis. The analysis of a novel Twitter corpus on the BREXIT debate, developed for our purposes, shows that like-minded individuals (sharing the same opinion towards the specific issue) are likely belonging to the same social network community. Moreover, opinion driven homophily is exhibited among neighbours. Interestingly, users’ stance shows diachronic evolution

    The Role of Prior Knowledge in Multi-Population Cultural Algorithms for Community Detection in Dynamic Social Networks

    Get PDF
    The relationship between a community and the knowledge that it encompasses is a fundamentally important aspect of any social network. Communities, with some level of similarity, implicitly tend to have some level of similarity in their knowledge as well. This work does the analysis on the role of prior knowledge in Multi-Population Cultural Algorithm (MPCA) for community detection in dynamic social networks. MPCA can be used to find the communities in a social network. The knowledge gained in this process is useful to analyze the communities in other social networks having some level of similarity. Our work assumes that knowledge is an integral part of any community of a social network and plays a very important role in its evolution. Different types of networks with levels of non-similarity are analyzed to see the role of prior knowledge while finding communities in them

    An Enhanced Multi-Objective Biogeography-Based Optimization Algorithm for Automatic Detection of Overlapping Communities in a Social Network with Node Attributes

    Full text link
    Community detection is one of the most important and interesting issues in social network analysis. In recent years, simultaneous considering of nodes' attributes and topological structures of social networks in the process of community detection has attracted the attentions of many scholars, and this consideration has been recently used in some community detection methods to increase their efficiencies and to enhance their performances in finding meaningful and relevant communities. But the problem is that most of these methods tend to find non-overlapping communities, while many real-world networks include communities that often overlap to some extent. In order to solve this problem, an evolutionary algorithm called MOBBO-OCD, which is based on multi-objective biogeography-based optimization (BBO), is proposed in this paper to automatically find overlapping communities in a social network with node attributes with synchronously considering the density of connections and the similarity of nodes' attributes in the network. In MOBBO-OCD, an extended locus-based adjacency representation called OLAR is introduced to encode and decode overlapping communities. Based on OLAR, a rank-based migration operator along with a novel two-phase mutation strategy and a new double-point crossover are used in the evolution process of MOBBO-OCD to effectively lead the population into the evolution path. In order to assess the performance of MOBBO-OCD, a new metric called alpha_SAEM is proposed in this paper, which is able to evaluate the goodness of both overlapping and non-overlapping partitions with considering the two aspects of node attributes and linkage structure. Quantitative evaluations reveal that MOBBO-OCD achieves favorable results which are quite superior to the results of 15 relevant community detection algorithms in the literature

    Social and place-focused communities in location-based online social networks

    Full text link
    Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.Comment: 11 pages, 5 figure

    The Dynamics of Multi-Modal Networks

    Get PDF
    The widespread study of networks in diverse domains, including social, technological, and scientific settings, has increased the interest in statistical and machine learning techniques for network analysis. Many of these networks are complex, involving more than one kind of entity, and multiple relationship types, both changing over time. While there have been many network analysis methods proposed for problems such as network evolution, community detection, information diffusion and opinion leader identification, the majority of these methods assume a single entity type, a single edge type and often no temporal dynamics. One of the main shortcomings of these traditional techniques is their inadequacy for capturing higher-order dependencies often present in real, complex networks. To address these shortcomings, I focus on analysis and inference in dynamic, multi-modal, multi-relational networks, containing multiple entity types (such as people, social groups, organizations, locations, etc.), and different relationship types (such as friendship, membership, affiliation, etc.). An example from social network theory is a network describing users, organizations and interest groups, where users have different types of ties among each other, such as friendship, family ties, etc., as well as affiliation and membership links with organizations and interest groups. By considering the complex structure of these networks rather than limiting the analysis to a single entity or relationship type, I show how we can build richer predictive models that provide better understanding of the network dynamics, and thus result in better quality predictions. In the first part of my dissertation, I address the problems of network evolution and clustering. For network evolution, I describe methods for modeling the interactions between different modalities, and propose a co-evolution model for social and affiliation networks. I then move to the problem of network clustering, where I propose a novel algorithm for clustering multi-modal, multi-relational data. The second part of my dissertation focuses on the temporal dynamics of interactions in complex networks, from both user-level and network-level perspectives. For the user-centric approach, I analyze the dynamics of user relationships with other entity types, proposing a measure of the "loyalty" a user shows for a given group or topic, based on her temporal interaction pattern. I then move to macroscopic-level approaches for analyzing the dynamic processes that occur on a network scale. I propose a new differential adaptive diffusion model for incorporating diversity and trust in the process of information diffusion on multi-modal, multi-relational networks. I also discuss the implications of the proposed diffusion model on designing new strategies for viral marketing and influential detection. I validate all the proposed methods on several real-world networks from multiple domains

    Heterogeneous network analysis on academic collaboration networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Heterogeneous networks are a type of complex network model which can have multi-type objects and relationships. Nowadays, research on heterogeneous networks has been increasingly attracting interest because these networks are more advantageous in modeling real-world situations than traditional networks, that is homogenous networks, that can only have one type of object and relationship. For example, the network of Facebook has vertices including photographs, companies, movies, news and messages and different relationships among these objects. Besides that, heterogeneous networks are especially useful for representing complex abstract concepts, such as friendship and academic collaboration. Because these concepts are hard to measure directly, heterogeneous networks are able to represent these abstract concepts by concrete and measurable objects and relationships. Because of these features, heterogeneous networks are applied in many areas including social networks, the World Wide Web, research publication networks and so on. This motivates the thesis to work on network analysis in the context of heterogeneous networks. In the past, homogeneous networks were the research focus of network analysis and therefore many methods proposed by previous studies for social network analysis were designed for homogenous networks. Although heterogeneous networks can be considered as an extension of homogenous networks, most of these methods are not applicable on heterogeneous networks because these methods can only address one type of object and relationships instead of dealing with multi-type ones. In network analysis, there are three basic problems including community detection, link prediction and object ranking. These three questions are the basis of many practical questions, such as network structure extraction, recommendation systems and search engines. Community detection, also called clustering, aims to find the community structure of a network including subgroups of vertices that are closely related, which can facilitate people to understand the structure of networks. Link prediction is a task for finding links which are currently non-existent in networks but may appear in the future. Object ranking can be viewed as an object evaluation task which aims to order a set of objects based on their importance, relevance, or other user defined criteria. In addition to these three research issues, approaches for determining the number of clusters a priori is also important because it can improve the quality of community detection significantly. This thesis works on heterogeneous network and proposes a set of methods to address the four main research problems in network analysis including community detection, determining the number of clusters, link prediction and object ranking. There are four contributions in this thesis. Contribution 1 proposes a Multiple Semantic-path Clustering method which can facilitate users to achieve a desired clustering in heterogeneous networks. Contribution 2 develops a Leader Detection and Grouping Clustering method which can determine the number of clusters a priori, thereby improving the quality of clustering. Contribution 3 introduces a Network Evolution-based Link Prediction method which can improve link prediction accuracy by modeling evolution patterns of objects. Contribution 4 proposes a co-ranking method which can work on complex bipartite heterogeneous networks where one type of vertex can connect to themselves directly and indirectly. The performance of all developed methods in the thesis in terms of clustering quality, link prediction accuracy and ranking effectiveness, is evaluated in the context of a research management dataset of University of Technology, Sydney (UTS) and public bibliographic DBLP (DataBase systems and Logic Programming) dataset. Moreover, all the results of the proposed methods in this thesis are compared with state-of-the-art methods and these experimental results suggest that the proposed methods outperform these state-of-the-art methods in quantitative and qualitative analysis

    Tiles: an online algorithm for community discovery in dynamic social networks

    Get PDF
    Community discovery has emerged during the last decade as one of the most challenging problems in social network analysis. Many algorithms have been proposed to find communities on static networks, i.e. networks which do not change in time. However, social networks are dynamic realities (e.g. call graphs, online social networks): in such scenarios static community discovery fails to identify a partition of the graph that is semantically consistent with the temporal information expressed by the data. In this work we propose Tiles, an algorithm that extracts overlapping communities and tracks their evolution in time following an online iterative procedure. Our algorithm operates following a domino effect strategy, dynamically recomputing nodes community memberships whenever a new interaction takes place. We compare Tiles with state-of-the-art community detection algorithms on both synthetic and real world networks having annotated community structure: our experiments show that the proposed approach is able to guarantee lower execution times and better correspondence with the ground truth communities than its competitors. Moreover, we illustrate the specifics of the proposed approach by discussing the properties of identified communities it is able to identify

    Social Network Analysis using Cultural Algorithms and its Variants

    Get PDF
    Finding relationships between social entities and discovering the underlying structures of networks are fundamental tasks for analyzing social networks. In recent years, various methods have been suggested to study these networks efficiently, however, due to the dynamic and complex nature that these networks have, a lot of open problems still exist in the field. The aim of this research is to propose an integrated computational model to study the structure and behavior of the complex social network. The focus of this research work is on two major classic problems in the field which are called community detection and link prediction. Moreover, a problem of population adaptation through knowledge migration in real-life social systems has been identified to model and study through the proposed method. To the best of our knowledge, this is the first work in the field which is exploring this concept through this approach. In this research, a new adaptive knowledge-based evolutionary framework is defined to investigate the structure of social networks by adopting a multi-population cultural algorithm. The core of the model is designed based on a unique community-oriented approach to estimate the existence of a relationship between social entities in the network. In each evolutionary cycle, the normative knowledge is shaped through the extraction of the topological knowledge from the structure of the network. This source of knowledge is utilized for the various network analysis tasks such as estimating the quality of relation between social entities, related studies regarding the link prediction, population adaption, and knowledge formation. The main contributions of this work can be summarized in introducing a novel method to define, extract and represent different sources of knowledge from a snapshot of a given network to determine the range of the optimal solution, and building a probability matrix to show the quality of relations between pairs of actors in the system. Introducing a new similarity metric, utilizing the prior knowledge in dynamic social network analysis and study the co-evolution of societies in a case of individual migration are another major contributions of this work. According to the obtained results, utilizing the proposed approach in community detection problem can reduce the search space size by 80%. It also can improve the accuracy of the search process in high dense networks by up to 30% compared with the other well-known methods. Addressing the link prediction problem through the proposed approach also can reach the comparable results with other methods and predict the next state of the system with a notably high accuracy. In addition, the obtained results from the study of population adaption through knowledge migration indicate that population with prior knowledge about an environment can adapt themselves to the new environment faster than the ones who do not have this knowledge if the level of changes between the two environments is less than 25%. Therefore, utilizing this approach in dynamic social network analysis can reduce the search time and space significantly (up to above 90%), if the snapshots of the system are taken when the level of changes in the network structure is within 25%. In summary, the experimental results indicate that this knowledge-based approach is capable of exploring the evolution and structure of the network with the high level of accuracy while it improves the performance by reducing the search space and processing time
    corecore