60,856 research outputs found

    Multi-level monitoring and rule based reasoning in the adaptation of time-critical cloud applications

    Get PDF
    Nowadays, different types of online services are often deployed and operated on the cloud since it offers a convenient on-demand model for renting resources and easy-to-use elastic infrastructures. Moreover, the modern software engineering discipline provides means to design time-critical services based on a set of components running in containers. Container technologies, such as Docker, Kubernetes, CoreOS, Swarm, OpenShift Origin, etc. are enablers of highly dynamic cloud-based services capable to address continuously varying workloads. Due to their lightweight nature, they can be instantiated, terminated and managed very dynamically. Container-based cloud applications require sophisticated auto-scaling methods in order to operate under different workload conditions, such as drastically changing workload scenarios. Imagine a cloud-based social media network website in which a piece of news suddenly becomes viral. On the one hand, in order to ensure the users’ experience, it is necessary to allocate enough computational resources before the workload intensity surges at runtime. On the other hand, renting expensive cloud-based resources can be unaffordable over a prolonged period of time. Therefore, the choice of an auto-scaling method may significantly affect important service quality parameters, such as response time and resource utilisation. Current cloud providers, such as Amazon EC2 and container orchestration systems, such as Kubernetes employ auto-scaling rules with static thresholds and rely mainly on infrastructure-related monitoring data, such as CPU and memory utilisation. This thesis presents a new Dynamic Multi-Level (DM) auto-scaling method with dynamically changing thresholds used in auto-scaling rules which exploit not only infrastructure, but also application-level monitoring data. The new DM method is implemented to be employed according to our proposed innovative viable architecture for auto-scaling containerised applications. The new DM method is compared with seven existing auto-scaling methods in different synthetic and real-world workload scenarios. These auto-scaling approaches include Kubernetes Horizontal Pod Auto-scaling (HPA), 1\textsuperscript{st} method of Step Scaling (SS1), 2\textsuperscript{nd} method of Step Scaling (SS2), 1\textsuperscript{st} method of Target Tracking Scaling (TTS1), 2\textsuperscript{nd} method of Target Tracking Scaling (TTS2), 1\textsuperscript{st} method of static THRESHOLD-based scaling (THRES1), and 2\textsuperscript{nd} method of static Threshold-based scaling (THRES2). All investigated auto-scaling methods are currently considered as advanced approaches, which are used in production systems such as Kubernetes, Amazon EC2, etc. Workload scenarios which are examined in this work also consist of slowly rising/falling workload pattern, drastically changing workload pattern, on-off workload pattern, gently shaking workload pattern, and real-world workload pattern. Based on experimental results achieved for each workload pattern, all eight auto-scaling methods are compared according to the response time and the number of instantiated containers. The results as a whole show that the proposed DM method has better overall performance under varied amount of workloads than the other auto-scaling methods. Due to satisfactory results, the proposed DM method is implemented in the SWITCH software engineering system for time-critical cloud-based applications. Auto-scaling rules along with other properties, such as characteristics of virtualisation platforms, current workload, periodic QoS fluctuations and similar, are continuously stored as Resource Description Framework (RDF) triples in a Knowledge Base (KB), which is included in the proposed architecture. The primary reason to maintain the KB is to address different requirements of the SWITCH solution stakeholders, such as those of cloud-based service providers, allowing for seamless information integration, which can be used for long-term trends analysis and support to strategic planning

    Multi-level monitoring and rule based reasoning in the adaptation of time-critical cloud applications

    Get PDF
    Nowadays, different types of online services are often deployed and operated on the cloud since it offers a convenient on-demand model for renting resources and easy-to-use elastic infrastructures. Moreover, the modern software engineering discipline provides means to design time-critical services based on a set of components running in containers. Container technologies, such as Docker, Kubernetes, CoreOS, Swarm, OpenShift Origin, etc. are enablers of highly dynamic cloud-based services capable to address continuously varying workloads. Due to their lightweight nature, they can be instantiated, terminated and managed very dynamically. Container-based cloud applications require sophisticated auto-scaling methods in order to operate under different workload conditions, such as drastically changing workload scenarios. Imagine a cloud-based social media network website in which a piece of news suddenly becomes viral. On the one hand, in order to ensure the users’ experience, it is necessary to allocate enough computational resources before the workload intensity surges at runtime. On the other hand, renting expensive cloud-based resources can be unaffordable over a prolonged period of time. Therefore, the choice of an auto-scaling method may significantly affect important service quality parameters, such as response time and resource utilisation. Current cloud providers, such as Amazon EC2 and container orchestration systems, such as Kubernetes employ auto-scaling rules with static thresholds and rely mainly on infrastructure-related monitoring data, such as CPU and memory utilisation. This thesis presents a new Dynamic Multi-Level (DM) auto-scaling method with dynamically changing thresholds used in auto-scaling rules which exploit not only infrastructure, but also application-level monitoring data. The new DM method is implemented to be employed according to our proposed innovative viable architecture for auto-scaling containerised applications. The new DM method is compared with seven existing auto-scaling methods in different synthetic and real-world workload scenarios. These auto-scaling approaches include Kubernetes Horizontal Pod Auto-scaling (HPA), 1\textsuperscript{st} method of Step Scaling (SS1), 2\textsuperscript{nd} method of Step Scaling (SS2), 1\textsuperscript{st} method of Target Tracking Scaling (TTS1), 2\textsuperscript{nd} method of Target Tracking Scaling (TTS2), 1\textsuperscript{st} method of static THRESHOLD-based scaling (THRES1), and 2\textsuperscript{nd} method of static Threshold-based scaling (THRES2). All investigated auto-scaling methods are currently considered as advanced approaches, which are used in production systems such as Kubernetes, Amazon EC2, etc. Workload scenarios which are examined in this work also consist of slowly rising/falling workload pattern, drastically changing workload pattern, on-off workload pattern, gently shaking workload pattern, and real-world workload pattern. Based on experimental results achieved for each workload pattern, all eight auto-scaling methods are compared according to the response time and the number of instantiated containers. The results as a whole show that the proposed DM method has better overall performance under varied amount of workloads than the other auto-scaling methods. Due to satisfactory results, the proposed DM method is implemented in the SWITCH software engineering system for time-critical cloud-based applications. Auto-scaling rules along with other properties, such as characteristics of virtualisation platforms, current workload, periodic QoS fluctuations and similar, are continuously stored as Resource Description Framework (RDF) triples in a Knowledge Base (KB), which is included in the proposed architecture. The primary reason to maintain the KB is to address different requirements of the SWITCH solution stakeholders, such as those of cloud-based service providers, allowing for seamless information integration, which can be used for long-term trends analysis and support to strategic planning

    Prediction based scaling in a distributed stream processing cluster

    Get PDF
    2020 Spring.Includes bibliographical references.Proliferation of IoT sensors and applications have enabled us to monitor and analyze scientific and social phenomena with continuously arriving voluminous data. To provide real-time processing capabilities over streaming data, distributed stream processing engines (DSPEs) such as Apache STORM and Apache FLINK have been widely deployed. These frameworks support computations over large-scale, high frequency streaming data. However, current on-demand auto-scaling features in these systems may result in an inefficient resource utilization which is closely related to cost effectiveness in popular cloud-based computing environments. We propose ARSTREAM, an auto-scaling computing environment that manages fluctuating throughputs for data from sensor networks, while ensuring efficient resource utilization. We have built an Artificial Neural Network model for predicting data processing queues and this model captures non-linear relationships between data arrival rates, resource utilization, and the size of data processing queue. If a bottleneck is predicted, ARSTREAM scales-out the current cluster automatically for current jobs without halting them at the user level. In addition, ARSTREAM incorporates threshold-based re-balancing to minimize data loss during extreme peak traffic that could not be predicted by our model. Our empirical benchmarks show that ARSTREAM forecasts data processing queue sizes with RMSE of 0.0429 when tested on real-time data

    An auto-scaling framework for analyzing big data in the cloud environment

    Get PDF
    Processing big data on traditional computing infrastructure is a challenge as the volume of data is large and thus high computational complexity. Recently, Apache Hadoop has emerged as a distributed computing infrastructure to deal with big data. Adopting Hadoop to dynamically adjust its computing resources based on real-time workload is itself a demanding task, thus conventionally a pre-configuration with adequate resources to compute the peak data load is set up. However, this may cause a considerable wastage of computing resources when the usage levels are much lower than the preset load. In consideration of this, this paper investigates an auto-scaling framework on cloud environment aiming to minimise the cost of resource use by automatically adjusting the virtual nodes depending on the real-time data load. A cost-effective auto-scaling (CEAS) framework is first proposed for an Amazon Web Services (AWS) Cloud environment. The proposed CEAS framework allows us to scale the computing resources of Hadoop cluster so as to either reduce the computing resource use when the workload is low or scale-up the computing resources to speed up the data processing and analysis within an adequate time. To validate the effectiveness of the proposed framework, a case study with real-time sentiment analysis on the universities’ tweets is provided to analyse the reviews/tweets of the people posted on social media. Such a dynamic scaling method offers a reference to improving the Twitter data analysis in a more cost-effective and flexible way

    Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes

    Full text link
    We investigate how simultaneously recorded long-range power-law correlated multi-variate signals cross-correlate. To this end we introduce a two-component ARFIMA stochastic process and a two-component FIARCH process to generate coupled fractal signals with long-range power-law correlations which are at the same time long-range cross-correlated. We study how the degree of cross-correlations between these signals depends on the scaling exponents characterizing the fractal correlations in each signal and on the coupling between the signals. Our findings have relevance when studying parallel outputs of multiple-component of physical, physiological and social systems.Comment: 8 pages, 5 figures, elsart.cl

    Levy distribution and long correlation times in supermarket sales

    Full text link
    Sales data in a commodity market (supermarket sales to consumers) has been analysed by studying the fluctuation spectrum and noise correlations. Three related products (ketchup, mayonnaise and curry sauce) have been analysed. Most noise in sales is caused by promotions, but here we focus on the fluctuations in baseline sales. These characterise the dynamics of the market. Four hitherto unnoticed effects have been found that are difficult to explain from simple econometric models. These effects are: (1) the noise level in baseline sales is much higher than can be expected for uncorrelated sales events; (2) weekly baseline sales differences are distributed according to a broad non-Gaussian function with fat tails; (3) these fluctuations follow a Levy distribution of exponent alpha = 1.4, similar to financial exchange markets and in stock markets; and (4) this noise is correlated over a period of 10 to 11 weeks, or shows an apparent power law spectrum. The similarity to stock markets suggests that models developed to describe these markets may be applied to describe the collective behaviour of consumers.Comment: 19 pages, 7 figures, accepted for publication in Physica

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Adaptive microservice scaling for elastic applications

    Get PDF
    • …
    corecore