120 research outputs found

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    On hypohamiltonian snarks and a theorem of Fiorini

    Get PDF
    In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini's theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem contains an unattainable condition for certain cases. We discuss and extend the results of Fiorini and Cavicchioli et al. and present a version of this theorem which is more general in several ways. Using Fiorini's erroneous result, Steffen had shown that hypohamiltonian snarks exist for some orders n >= 10 and each even n >= 92. We rectify Steffen's proof by providing a correct demonstration of a technical lemma on flower snarks, which might be of separate interest. We then strengthen Steffen's theorem to the strongest possible form by determining all orders for which hypohamiltonian snarks exist. This also strengthens a result of Macajova and Skoviera. Finally, we verify a conjecture of Steffen on hypohamiltonian snarks up to 36 vertices

    Ban--Linial's Conjecture and treelike snarks

    Full text link
    A bridgeless cubic graph GG is said to have a 2-bisection if there exists a 2-vertex-colouring of GG (not necessarily proper) such that: (i) the colour classes have the same cardinality, and (ii) the monochromatic components are either an isolated vertex or an edge. In 2016, Ban and Linial conjectured that every bridgeless cubic graph, apart from the well-known Petersen graph, admits a 2-bisection. In the same paper it was shown that every Class I bridgeless cubic graph admits such a bisection. The Class II bridgeless cubic graphs which are critical to many conjectures in graph theory are snarks, in particular, those with excessive index at least 5, that is, whose edge-set cannot be covered by four perfect matchings. Moreover, Esperet et al. state that a possible counterexample to Ban--Linial's Conjecture must have circular flow number at least 5. The same authors also state that although empirical evidence shows that several graphs obtained from the Petersen graph admit a 2-bisection, they can offer nothing in the direction of a general proof. Despite some sporadic computational results, until now, no general result about snarks having excessive index and circular flow number both at least 5 has been proven. In this work we show that treelike snarks, which are an infinite family of snarks heavily depending on the Petersen graph and with both their circular flow number and excessive index at least 5, admit a 2-bisection.Comment: 10 pages, 6 figure

    Hyperbolic polyhedral surfaces with regular faces

    Full text link
    We study hyperbolic polyhedral surfaces with faces isometric to regular hyperbolic polygons satisfying that the total angles at vertices are at least 2π.2\pi. The combinatorial information of these surfaces is shown to be identified with that of Euclidean polyhedral surfaces with negative combinatorial curvature everywhere. We prove that there is a gap between areas of non-smooth hyperbolic polyhedral surfaces and the area of smooth hyperbolic surfaces. The numerical result for the gap is obtained for hyperbolic polyhedral surfaces, homeomorphic to the double torus, whose 1-skeletons are cubic graphs.Comment: 23 pages, 3 figures. arXiv admin note: text overlap with arXiv:1804.1103
    corecore