4 research outputs found

    Task allocation and consensus with groups of cooperating Unmanned Aerial Vehicles

    Get PDF
    The applications for Unmanned Aerial Vehicles are numerous and cover a range of areas from military applications, scientific projects to commercial activities, but many of these applications require substantial human involvement. This work focuses on the problems and limitations in cooperative Unmanned Aircraft Systems to provide increasing realism for cooperative algorithms. The Consensus Based Bundle Algorithm is extended to remove single agent limits on the task allocation and consensus algorithm. Without this limitation the Consensus Based Grouping Algorithm is proposed that allows the allocation and consensus of multiple agents onto a single task. Solving these problems further increases the usability of cooperative Unmanned Aerial Vehicles groups and reduces the need for human involvement. Additional requirements are taken into consideration including equipment requirements of tasks and creating a specific order for task completion. The Consensus Based Grouping Algorithm provides a conflict free feasible solution to the multi-agent task assignment problem that provides a reasonable assignment without the limitations of previous algorithms. Further to this the new algorithm reduces the amount of communication required for consensus and provides a robust and dynamic data structure for a realistic application. Finally this thesis provides a biologically inspired improvement to the Consensus Based Grouping Algorithm that improves the algorithms performance and solves some of the difficulties it encountered with larger cooperative requirements

    Snake Robots - From Biology to Nonlinear Control

    No full text
    Inspired by the motion of biological snakes, this paper presents an overview of recent results in modelling and control of snake robots. The objective of the research underlying this paper is to contribute to the mathematical foundation of the control theory of snake robots. To this end, the paper presents two mathematical models of planar snake robot dynamics, which are employed to investigate stabilisability and controllability properties of snake robots. Furthermore, averaging theory is used to derive properties of the velocity dynamics of snake robots. Moreover, a straight line path following controller is proposed and cascaded systems theory is employed to prove that the controller K-exponentially stabilizes a snake robot to any desired straight path

    Snake Robots - From Biology to Nonlinear Control

    No full text
    Inspired by the motion of biological snakes, this paper presents an overview of recent results in modelling and control of snake robots. The objective of the research underlying this paper is to contribute to the mathematical foundation of the control theory of snake robots. To this end, the paper presents two mathematical models of planar snake robot dynamics, which are employed to investigate stabilisability and controllability properties of snake robots. Furthermore, averaging theory is used to derive properties of the velocity dynamics of snake robots. Moreover, a straight line path following controller is proposed and cascaded systems theory is employed to prove that the controller K-exponentially stabilizes a snake robot to any desired straight path.submittedVersio
    corecore