22,866 research outputs found

    Robust Kalman tracking and smoothing with propagating and non-propagating outliers

    Full text link
    A common situation in filtering where classical Kalman filtering does not perform particularly well is tracking in the presence of propagating outliers. This calls for robustness understood in a distributional sense, i.e.; we enlarge the distribution assumptions made in the ideal model by suitable neighborhoods. Based on optimality results for distributional-robust Kalman filtering from Ruckdeschel[01,10], we propose new robust recursive filters and smoothers designed for this purpose as well as specialized versions for non-propagating outliers. We apply these procedures in the context of a GPS problem arising in the car industry. To better understand these filters, we study their behavior at stylized outlier patterns (for which they are not designed) and compare them to other approaches for the tracking problem. Finally, in a simulation study we discuss efficiency of our procedures in comparison to competitors.Comment: 27 pages, 12 figures, 2 table

    IDEOLOG: A Program for Filtering Econometric Data - A Synopsis of Alternative Methods

    Get PDF
    An account is given of various filtering procedures that have been implemented in a computer program, which can be used in analysing econometric time series. The program provides some new filtering procedures that operate primarily in the frequency domain. Their advantage is that they are able to achieve clear separations of components of the data that reside in adjacent frequency bands in a way that the conventional time-domain methods cannot. Several procedures that operate exclusively within the time domain have also been implemented in the program. Amongst these are the bandpass filters of Baxter and King and of Christiano and Fitzgerald, which have been used in estimating business cycles. The Henderson filter, the Butterworth filter and the Leser or Hodrick–Prescott filter are also implemented. These are also described in this paper. Econometric filtering procedures must be able to cope with the trends that are typical of economic time series. If a trended data sequence has been reduced to stationarity by differencing prior to its filtering, then the filtered sequence will need to be re-inflated. This can be achieved within the time domain via the summation operator, which is the inverse of the difference operator. The effects of the differencing can also be reversed within the frequency domain by recourse to the frequency-response function of the summation operator.

    Penalized likelihood estimation and iterative kalman smoothing for non-gaussian dynamic regression models

    Get PDF
    Dynamic regression or state space models provide a flexible framework for analyzing non-Gaussian time series and longitudinal data, covering for example models for discrete longitudinal observations. As for non-Gaussian random coefficient models, a direct Bayesian approach leads to numerical integration problems, often intractable for more complicated data sets. Recent Markov chain Monte Carlo methods avoid this by repeated sampling from approximative posterior distributions, but there are still open questions about sampling schemes and convergence. In this article we consider simpler methods of inference based on posterior modes or, equivalently, maximum penalized likelihood estimation. From the latter point of view, the approach can also be interpreted as a nonparametric method for smoothing time-varying coefficients. Efficient smoothing algorithms are obtained by iteration of common linear Kalman filtering and smoothing, in the same way as estimation in generalized linear models with fixed effects can be performed by iteratively weighted least squares estimation. The algorithm can be combined with an EM-type method or cross-validation to estimate unknown hyper- or smoothing parameters. The approach is illustrated by applications to a binary time series and a multicategorical longitudinal data set

    Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space

    Full text link
    This paper focuses on devising graph signal processing tools for the treatment of data defined on the edges of a graph. We first show that conventional tools from graph signal processing may not be suitable for the analysis of such signals. More specifically, we discuss how the underlying notion of a `smooth signal' inherited from (the typically considered variants of) the graph Laplacian are not suitable when dealing with edge signals that encode a notion of flow. To overcome this limitation we introduce a class of filters based on the Edge-Laplacian, a special case of the Hodge-Laplacian for simplicial complexes of order one. We demonstrate how this Edge-Laplacian leads to low-pass filters that enforce (approximate) flow-conservation in the processed signals. Moreover, we show how these new filters can be combined with more classical Laplacian-based processing methods on the line-graph. Finally, we illustrate the developed tools by denoising synthetic traffic flows on the London street network.Comment: 5 pages, 2 figur

    Estimation of muscular forces from SSA smoothed sEMG signals calibrated by inverse dynamics-based physiological static optimization

    Get PDF
    The estimation of muscular forces is useful in several areas such as biomedical or rehabilitation engineering. As muscular forces cannot be measured in vivo non-invasively they must be estimated by using indirect measurements such as surface electromyography (sEMG) signals or by means of inverse dynamic (ID) analyses. This paper proposes an approach to estimate muscular forces based on both of them. The main idea is to tune a gain matrix so as to compute muscular forces from sEMG signals. To do so, a curve fitting process based on least-squares is carried out. The input is the sEMG signal filtered using singular spectrum analysis technique. The output corresponds to the muscular force estimated by the ID analysis of the recorded task, a dumbbell weightlifting. Once the model parameters are tuned, it is possible to obtain an estimation of muscular forces based on sEMG signal. This procedure might be used to predict muscular forces in vivo outside the space limitations of the gait analysis laboratory.Postprint (published version

    Regularized adaptive long autoregressive spectral analysis

    Full text link
    This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch. The first one deals with spectral smoothness, in the regularization framework, while the second one is devoted to time continuity, in the Kalman formalism. The present paper proposes an original synthesis of the two contributions: a new regularized criterion is introduced that takes both information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised: the problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood. The improvement is quantified in the field of meteorological radar
    corecore