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Abstract. Dynamic regression or state space models provide a flexible framework for

analyzing non-Gaussian time series and longitudinal data, covering for example models for

discrete longitudinal observations. As for non-Gaussian random coefficient models, a direct

Bayesian approach leads to numerical integration problems, often intractable for more

complicated data sets. Recent Markov chain Monte Carlo methods avoid this by repeated

sampling from approximative posterior distributions, but there are still open questions about

sampling schemes and convergence. In this article we consider simpler methods of inference

based on posterior modes or, equivalently, maximum penalized likelihood estimation. From the

latter point of view, the approach can also be interpreted as a nonparametric method for

smoothing time-varying coefficients. Efficient smoothing algorithms are obtained by iteration of

common linear Kalman filtering and smoothing, in the same way as estimation in generalized

linear models with fixed effects can be performed by iteratively weighted least squares

estimation. The algorithm can be combined with an EM-type method or cross-validation to

estimate unknown hyper- or smoothing parameters. The approach is illustrated by applications

to a binary time series and a multicategorical longitudinal data set.

Keywords. Discrete observations; hyperparameter estimation; non-Gaussian longitudinal

data; smoothing; state space models; time-varying coefficients.

1.  INTRODUCTION

Dynamic regression or state space models relate time series observations { yt } to

a sequence of unknown states or parameters {α t}, typically including a trend

component and time-varying coefficients of covariates. Given the observations

y yT1,..., , estimation (filtering and smoothing) of the unknown sequence {α t } is of

primary interest. For Gaussian linear state space models, the relationship is
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given by y Zt t t t= +α ε , where Zt  is an observation or design matrix of appropriate

dimension. It is supplemented by a linear transition equation α α ξt t t tF= +−1  and

the usual assumptions on the Gaussian noise processes. Due to linearity and

normality, the posterior distribution of α t  given y yT1,...,  is also normal,

α t y yT1,..., ∼N a Vt T t T,� �, and the linear Kalman filter and smoother provides

posterior means at T , together with posterior covariances Vt T , as optimal estimates

for α t  given y yT1,...,  in a computationally efficient way.

For non-Gaussian time series or longitudinal data, the linear observation

model has to be replaced by an appropriate non-Gaussian model. A broad class of

generalized dynamic regression or exponential family state space models is

obtained if the observation model for yt tα  is in the form of a generalized linear

model with predictor ηt=Zt tα . An important class of non-exponential family

models are robust models with heavy-tailed error distributions that are resistant

against additive outliers. Closed form updating formulas similar to linear

Kalman filtering in the linear Gaussian model are only available for special

models with appropriate conjugate prior-posterior distributions.

In this article, the Gaussian linear transition equation for {α t} is retained,

allowing simultaneous modelling and estimation of stochastic trends, seasonal

components and time-varying covariate effects. This corresponds to the common

assumption of Gaussian random effects in generalized linear mixed models as

e.g. in Breslow and Clayton (1993).

Direct Bayesian approaches involve irreducibly high-dimensional

integrations, which are generally intractable for more complicated problems.

Recent Markov chain Monte Carlo methods avoid this by drawing repeated

samples from approximative posterior distributions (e.g. Carlin, Polson and

Stoffer, 1992; Carter and Kohn, 1994). However, there are still problems

concerning choice of computationally efficient sampling schemes and convergence

of the sampling to equilibrium.
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Therefore, simpler approximative methods are still useful as an alternative,

or supplement for exploratory data analysis, or to provide initial solutions for

other methods as e.g. in Schnatter (1992), Frühwirth-Schnatter (1994). In this

paper, as in Breslow and Clayton (1993) for generalized linear mixed models or

in Fahrmeir and Kaufmann (1991), Fahrmeir (1992) for dynamic generalized

linear models, estimation is based on posterior modes or, equivalently, maximum

penalized likelihood estimation (Green, 1987). From the latter point of view, the

approach can also be interpreted nonparametrically: Dropping the Bayesian

smoothness prior imposed on {α t} by the transition model and starting directly

from the penalized likelihood criterion, the method yields an efficient procedure

for discrete spline smoothing of time-varying coefficients (compare Hastie and

Tibshirani, 1993). We show that maximum penalized likelihood smoothing

estimates can be obtained by iterative application of linear Kalman filtering and

smoothing to a working model, similarly as Fisher scoring in static generalized

linear models can be performed by iteratively weighted least squares applied to

working observations. This is a rather convenient result, since it allows to use

any computationally efficient and available version of linear Kalman filters and

smoothers in the iteration steps. For exponential family models, a related

algorithm, though derived by different arguments, is contained in Durbin and

Koopman (1992). Advantages of iterative Kalman filtering and smoothing, in

comparison with common nonparametric procedures, are: It avoids an additional

inner backfitting loop, directly provides error covariance matrices as elements of

the blockdiagonal of the smoother matrix, and therefore can be combined with an

EM-type algorithm or with cross-validation to estimate unknown hyper- or

smoothing parameters.

The paper is organized as follows: Dynamic exponential family models are

dealt with in Section 2, including specific models which are used in the

simulations and illustrative applications of Section 4. Penalized likelihood
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estimation by iterative Kalman smoothing is developed in Section 3. Extensions

to general non-Gaussian dynamic regression models are given in Section 5.

2.  EXPONENTIAL FAMILY STATE SPACE MODELS

We first consider the case of time series observations { yt }. An extension to

longitudinal data { yit } for a population of units i=1,...,n is given at the end of the

section.

In the sequel responses yt  and states α t  have dimension q respectively p. Let us

rewrite the Gaussian linear observation equation as

yt tα ∼N Z Rt t t tη α= ,� �   , (2.1)

where R yt t t= var α� � is the covariance matrix of yt  given α t . The obvious

modification to non-Gaussian exponential family observations is to specify the

observation model for yt  given α t  by a q-dimensional distribution of the natural

exponential family type:

yt tα ∼p y c y y bt t t t t t t tα θ θ� � � � � �� �= ′ −exp , (2.2)

where θ t  , the natural parameter, is a function of η αt t tZ= , and ct ⋅� � and bt ⋅� � are

known functions. For simplicity we assume that no unknown nuisance

parameter is present. By the properties of exponential families the mean and

variance functions are then

E y bt t t t t t t
α μ α ∂ θ ∂θ� � � � � �= =  , (2.3)

var y bt t t t t t t tα α ∂ θ ∂θ ∂θ� � � � � �= = ′Σ 2 . (2.4)

As in static generalized linear models the mean μ t ( )α t  is related to the linear

predictor η αt t tZ=  by

μ α αt t t th Z( ) = � � , (2.5)

where h: IRq→IRq is a two-times continuously differentiable response function

and Zt  is a qxp-matrix, which may depend on covariates xt  or also on past
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responses ys (s = 1,...,t-1). In the latter case densities, means etc. are to be

understood conditionally upon past responses.

The exponential family assumption (2.2) together with the mean specification

(2.5) replaces the observation equation (2.1) in linear Gaussian models. It is

supplemented by a state transition model. We retain the assumption of a

Gaussian linear transition equation

α α ξt t t tF t T= + =−1 1( ,..., ) (2.6)

with transition matrix Ft , Gaussian white noise { }ξt  with ξt∼N Qt0,� �, and initial

state α0∼N a Q0 0,� �.

To specify the models completely in terms of densities, the following

conditional independence assumptions are added:

(A1) Conditional on α t , current responses yt  are independent of past states

α αt−1 0,..., , i.e.

p y p y t Tt t t t tα α α αο, ,..., ( ,..., )− = =1 1� � � �  .

Assumption (A1) is implied in Gaussian linear state space models by the

assumption of mutual independence of the error sequences ε t	 
 and ξ t	 
. If the

design matrix Zt  contains past responses or if covariates are stochastic, (A1) also

has to be understood conditionally.

(A2) The sequence α t	 
 is Markovian, i.e.

p pt t t tα α α α α− −=1 0 1,...,� � � � .

According to (2.6) we have p t tα α −1� �∼N F Qt t tα −1 ,� �.
For scalar q = 1� � responses, univariate dynamic generalized linear models

are obtained. For counts loglinear Poisson models are a standard choice:

yt tα ∼Po t t tλ λ η� � � �, exp= . (2.7)

The linear predictor may be chosen as in simple structural time series models for

Gaussian observations:

η τ γ βt t t t tx t T= + + ′ =( ,..., ),1
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where the states are unobserved stochastic trend and seasonal components τ γt t, ,

and possibly time-varying effects βt of covariates xt . Simple nonstationary

models for trend or time-varying effects are first or second order random walk

models, e.g.

τ τ τ τ τt t t t t t t tu u u= + = − +− − −1 1 22resp. , ∼N u0 2,σ� � .

By appropriate definition of α t t tZ F, and  these models can be put into state space

form. A seasonal component with period s can be modelled by

γ ϖt j
j

s

t−
=

−
∑ =

0

1
, ϖt∼ ( )N 0 2,σϖ ,

see also Section 4.

Of course, a loglinear Poisson model will not always be appropriate, and

other choices such as a negative binomial may also be considered. If the number

of counts at time t is limited by n t , say, binomial regression models, such as logit

or probit models, are often appropriate:

yt tα ∼B n ht t t t, , ,π π η� � � �= (2.8)

where h(⋅) is a response function, linking π t  to the predictor η αt t tZ= . For

h ⋅ = ⋅ + ⋅� � � � � �	 
exp exp1  one obtains the logit model, for h ⋅ = ⋅� � � �Φ  the probit model.

For nt = 1, this is the most common way of modelling binary time series.

Extensions to time series of multicategorical or multinomial responses

proceed along similar lines: If k is the number of categories, responses yt  can be

described by a vector y y yt t tq= ′( ,..., )1 , with q=k-1 components. If only one

multicategorical observation is made for each t, then ytj = 1 if category j has been

observed, and ytj = 0  otherwise ( j q= 1,..., ). Corresponding categorical response

models are completely determined by response probabilities π π πt t tq= ′( ,..., )1 , with

π tj tjP y= = 1 �  ( j q= 1,..., ). If there are nt  independent repeated responses at t, then

y y yt t tq= ′( ,..., )1  is multinomial with parameters nt t,π , and ytj is the absolute

frequency of observations in category j.

For example, a dynamic multivariate logistic model with trend and covariates

is specified by
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n x j qtj
tj

trr

q tj tj t tj=
+

= + ′ =
=∑

exp

exp
, ( ,..., ),

η

η
η τ β

� �
� �1

1
1

together with a transition model for trend and covariate components.

The simplest models for ordered categories are dynamic cumulative models.

They can be derived from a threshold mechanism for an underlying linear

dynamic model. The resulting (conditional) response probabilities are

π η ηtj tj t jG G j q= − =−� � � �, ( ,..., ),1 1 (2.9)

with linear predictors

η τ βtj tj t tx= − ′ ,

ordered threshold parameters −∞ = τ t0 <...<τ tq<∞, a global covariate effect β t , and

a known distribution function G, e.g. the logistic one.

Dynamic cumulative models can be written in state space form along the

previous lines. In the simplest case threshold and covariate effects obey a first-

order random walk or are partly constant in time. Then

α τ τ β α ξt t tq t t t

t

t

t

Z
x

x

= ′ ′ = +

=
− ′

− ′

�

�

�
�
�

�

�

�
�
�

−( ,..., , ) ,

,

1 1

1

1
� �

and the response function can be appropriately defined. Dynamic versions of

other models for ordered categories (see e.g. Fahrmeir and Tutz, 1994, ch.3) can

be designed with analogous reasoning.

The models can be extended to longitudinal data, where time series { yit } are

observed for each unit i (i = 1,...,n) of a population of size n, if we specify

individual observation models ηit = Zit tα , μit = h it( )η  of the form (2.5). Design

matrices Zit are constructed as before and may be appropriate functions of

covariates xit . The states αt  have now to be interpreted as population

parameters. As common for longitudinal data, we assume that individual

responses yit  at time t are conditionally independent, given αt , covariates and

past responses. Collecting individual responses into the observation vector yt  =
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( yit , i = 1,...,n) at time t, the models above can be easily extended to the „time

series“ { yt } = { yit , i = 1,...,n}.

3.  POSTERIOR MODE SMOOTHING AND PENALIZED LIKELIHOOD ESTIMATION

3.1.  Fisher scoring by iterative Kalman smoothing

In this subsection we derive smoothing algorithms, assuming that

hyperparameters, e.g. Qt , are known. Estimation of hyperparameters is dealt

with in Subsection 3.2. For the ease of presentation, we first consider time series

data { yt } and suppose that covariates are deterministic. Furthermore we denote

histories of responses and states up to t by

y y yt t
* ( ,..., ) ,= ′ ′ ′1  α α αt t

* ( ,..., )= ′ ′ ′0

and set α α= T
*  . Then the posterior mode smoother a≡ ( , ,..., )′ ′ ′ ′a a aT T T T0 1 ∈IRm with

m=(T+1)p is defined as

a≡ ( , ,..., )′ ′ ′ ′a a aT T T T0 1 :=argmax *

α
αp yT �� � ,

i.e. as the mode of the posterior distribution of the entire sequence. The aim is to

maximize p yTα *� �. Repeated application of Bayes' theorem yields

p yTα * � = 
1

p yT
*� �  p y y p y pt t t

t

T

t t t
t

T

α α α α* * * *, ,−
=

− −
=

∏ ∏ ⋅���
���1

1
1 1

1
0 �  � � �  .

With (A1), (A2), and as p yT
*� � does not depend on α,

p yTα * � ∝ p y y p pt t t
t

T

t t
t

T

α α α α, *
−

=
−

=
∏ ∏ ⋅1

1
1

1
0 � � � � � .

Taking logarithms and inserting the Gaussian densities of the transition model

(2.6), we obtain the penalized log-likelihood function PL: IRm → IR

PL(α):= ln , *p y yt t t
t

T

α −
=
∑ 1

1

 �− − ′ −−1
2 0 0 0

1
0 0α αa Q a� � � �

− − ′ −−
−

−
=
∑1

2 1
1

1
1

α α α αt t t t t t t
t

T

F Q F� � � � , (3.1)
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where the densities p y yt t tα , −
∗

1� � are defined by the exponential family observation

model.

Thus
a≡ ( , ,..., )′ ′ ′ ′a a aT T T T0 1 = argmax

α
αPL� �� 	 , (3.2)

i.e. maximizing p yTα * � is equivalent to maximize the penalized log-likelihood (3.1) with

respect to α. We may however also interprete (3.1), (3.2) without reference to the

Bayesian smoothness prior defined by the transition model (2.6) for {α t }. From a

nonparametric point of view, we may consider {α t } as a fixed, but unknown

sequence of states or parameters. Then the first term in (3.1) measures goodness

of the fit obtained by the linear predictor Zt tα  . The second term penalizes

roughness of the fit or, equivalently, smoothness of the sequence {α t }. This is in

complete analogy to spline smoothing in generalized additive models (GAM), cf.

Hastie and Tibshirani (1990), and most easily seen from a simple example, e.g. a

binary dynamic logit model log{π t /(1-π t )} = τ βt t tx+ . If the trend τ t and the time-

varying effect β t  are assumed to obey first order random walks, then (3.1)

becomes with α τ βt t t= ′( , )

PL(α) = y yt t t t
t

T

log logπ π+ − −
=
∑ 1 1

1

� � � �� � − − −
=
∑1

2 2 1

2

1σ
τ τ

τ
t t

t

T

� �  − − −
=
∑1

2 2 1

2

1σ
β β

β
t t

t

T

� � ,

neglecting the priors of τ0 , β0  for simplicity. While the first term measures

goodness of fit in terms of the deviance, the other terms penalize roughness in

trends {τ t} and time-varying effects {β t }. Compared to spline smoothing, we are

therefore smoothing trends, seasonal components and covariate effects instead of

covariate functions. The variances στ
2, σβ

2, or more general, the components of Qt,

play the role of smoothness parameters. This relationship is also pointed out in

Hastie and Tibshirani (1993). For a linear Gaussian observation model

y Zt t t t= +α ε , the log-likelihood term in (3.1) specializes to

ln , *p y yt t t
t

T

α −
=
∑ 1

1

 � = − − ′ −−

=
∑1

2
1

1

( ) ( )y Z R y Zt t t t t t t
t

T

α α ,

so that (3.1) becomes a penalized least squares criterion, and the nonlinear

maximization problem (3.2) reduces to a quadratic programming problem. Since
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posterior modes and means coincide for linear Gaussian state space models, the

optimization problem is solved by common linear Kalman filters and smoothers.

They exploit the special dynamic structure of the penalized least squares

criterion very efficiently, resulting in recursive algorithms of complexity O(T).

To find a solution of (3.2) in the general case, i.e. the exponential family

observation model, any nonlinear optimization code could be used in principle.

For statistical purposes, Gauss-Newton or Fisher scoring is of advantage, just as

for static GLM's. However, as in the case of linear Gaussian models, algorithms

should take into account the special dynamic structure of the penalized log-

likelihood criterion. In the following, we derive a single Fisher scoring step in

analogy to static generalized linear models and show that it can be performed by

applying linear Kalman filtering and smoothing to "working" observations, thus

resulting in an algorithmic solution of complexity O(T). Let us first rewrite (3.1)

in compact matrix notation as

PL(α) = l(α) − ′
1
2
α αK , (3.3)

where

l(α) = lt t
t

T

( )α
=
∑

0

,  lt t( )α := ln p y yt t tα , *
−1 �      (t = 1,...,T),

l0 0( )α  := − − ′ −−( ) ( )α α0 0 0
1

0 0 2a Q a , and the penalty matrix K is symmetric and

block-tridiagonal, with blocks easily obtained from (3.1):

K

K K

K K K

K

K

K K
T T

T T TT

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

−

−

00 01

10 11 12

21

1

1

0

0

� �

� � ,

,

with
K K t T

K F Q F
K Q F Q F t T

F
K F Q t T

t t t t

tt t t t t

T

t t t t

− −
−

−
+ +

−
+

+

−
−

= ′ =
= ′
= + ′ =
=
= − ′ =

1 1

00 1 1
1

1
1

1 1
1

1

1

1
1

1

1
0

1

, ,

,

( ,..., ),
,

( ,..., ),
,

( ,..., ).
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To describe a Fisher scoring step in matrix notation, it is convenient to introduce

the vector of observations

′y  = ( , ,..., )′ ′ ′a y yT0 1

augmented by a0  . Correspondingly we define the vector of expectations

augmented by α0 ,

μ α( )′  = ′ ′ ′α μ α μ α0 1 1, ( ),..., ( )T T	 
,

where μ αt t( ) = h(Zt tα ), the block-diagonal covariance matrix

Σ( )α  = diag Q T T0 1 1, ( ),..., ( )Σ Σα α	 
,

the block-diagonal design matrix

Z = diag I Z ZT, ,...,1� �,

with I∈IRp,p as the unit matrix and the block-diagonal matrix

D(α) = diag I D DT T, ( ),..., ( )1 1α α	 
,

where Dt t( )α  = ∂ η ∂ηh t( )  is the first derivative of the response function h(η)

evaluated at ηt  = Zt tα . Then, using properties (2.4), (2.5), the score function of

l(α) in (3.3) is

s(α) = ′ ′ ′
′

s s sT T0 0 1 1α α α� � � � � �� �, ,...,  := ′ −−Z D yα α μ α� � � � � �	 
Σ 1 , (3.4)

with components s0 0( )α  = Q a0
1

0 0
− − α� �, st t( )α  = ′ −−Z D yt t t t t t t t( ) ( ) ( )α α μ αΣ 1 	 
  (t =

1,...,T). The weight matrix

W(α) = diag W W WT T0 1 1, ,...,α α� � � �� � := D D( ) ( ) ( )α α αΣ− ′1 (3.5)

with diagonal blocks W0 = Q0
1− , Wt t( )α  = D Dt t t t t t( ) ( ) ( )α α αΣ− ′1   (t = 1,...,T), and the

(expected) information matrix of l(α)

S(α) = diag S S ST T0 1 1, ,...,α α� � � �� � := ′Z W Z( )α (3.6)

with diagonal blocks S0  = Q0
1− , St t( )α  = ′Z W Zt t t t( )α   (t = 1,...,T), are block-diagonal.

The first derivative of PL(α) in (3.3) is

u(α) = ∂ α ∂αPL( )  = s(α) - Kα,
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and the block-tridiagonal expected information matrix is given by

U(α) = − ′E PL∂ α ∂α∂α2 ( )� � = S(α) + K = ′ +Z W Z K( )α .

A single Fisher scoring step from the current iterate α0∈IRm, say, to the next

iterate α1∈IRm  is then

U(α0) α α1 0−� � = u(α0) .

This can be rewritten as

α α α α1 0 1 0 0= ′ + ′
−

Z W Z K Z W y( ) ( )�� � � � , (3.7)

with "working" observation

�y α0� � = � , � ,..., �′ ′ ′
′

y y yT T0 1 1
0 0α α� � � �� �  := D y Z− ′

− +1 0 0 0( ) ( )α μ α α� � � � , (3.8)

where the components �y0  = a0, � ( )yt tα0  = D y Zt t t t t t t
− ′

− +1 0 0 0( ) ( )α μ α α� � � �    (t = 1,...,T).

A similar formula, without the penalty matrix K which contains the information

of the transition model, is obtained for the iteratively weighted least squares

estimate applied to "working" observations in static GLM's.

Assume now the special case of a linear Gaussian state space model, defined

by (2.1), (2.6). Then μ α( ) = Zα , D( )α  is the identity matrix, and the score

function becomes

s( )α  = ′ −−Z R y Z1 α� �,

with R = diag Q R RT0 1, ,...,� �, Rt  = cov(yt tα ) . The weight matrix W(α) reduces to

R−1, and the "working" observation to the actual observation y, since D( )α0  = I,

μ α( )0  = Zα0 . Therefore (3.7) becomes

a = ( )′ + ′− − −Z R Z K Z R y1 1 1 , (3.9)

where a = ( , ,..., )′ ′ ′ ′a a aT T T T0 1  is the vector of smoothed estimates. As already

remarked earlier, the classical linear Kalman filter and smoother solves (3.9)

efficiently, without explicitly inverting the block-tridiagonal matrix ′ +−Z R Z K1  .

Comparing now (3.9) and (3.7), we conclude the following: In order to solve (3.7),

that is to carry out a single Fisher scoring step in the exponential family case, we

can apply any convenient version of linear Kalman filtering and smoothing,
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however replacing Rt by Wt
−1 0( )α  from (3.5) and y by �y α0� � from (3.8). We will call

this a "working" Kalman filter and smoother. In the following algorithm, at t , Vt t ,

at t−1, Vt t−1, at T, Vt T are numerical approximations to filtered, predicted and

smoothed values of α t  and corresponding approximate error covariance matrices.

Working Kalman filter and smoother (WKFS):

Initialization: a a0 0 0=  , V Q0 0 0=  .

For t = 1,...,T:

predictionstep a Fa
V FV F Q

correctionstep a a K y Z a
V V K Z V

withKalmangainK V Z Z V Z W

t t t t t

t t t t t t t

t t t t t t t t t

t t t t t t t t

t t t t t t t t t

: ,
.

: � ( ) ,
,

( ) .

− − −

− − −

− −

− −

− −
− −

=
= ′ +

= + −
= −

= ′ ′ +

1 1 1

1 1 1

1
0

1

1 1

1 1
1 0

1

α

α

� �

� �

For smoothing we may use the classical fixed interval smoother

For t = T,...,1:
a a B a a

V V B V V B where

B V F V

t T t t t t T t t

t T t t t t T t t t

t t t t t t

− − − −

− − − −

− − −
−

= + −

= + − ′

= ′

1 1 1 1

1 1 1 1

1 1 1
1

( ),

( ) ,

or any other computationally efficient version, yielding α1  = ( , ,..., )′ ′ ′ ′a a aT T T T0 1 .

Remarks:

(i) Note that for α0  = ( , ,..., ,..., )′ ′ ′ ′ ′− −a a a at t T T0 10 1 1  (WKFS) specializes to (GKFS), the

generalized extended Kalman filter and smoother in Fahrmeir (1992). Thus

(GKFS) implicitly chooses a reasonable starting vector α0, but it stops after only

one iteration step.

(ii) Applying the matrix inversion lemma, e.g. Anderson and Moore (1979), and

considering (3.4), (3.6), it can be shown that the correction step of (WKFS) can be

written in scoring form as

correctionstep V V S

a a V s
t t t t t t

t t t t t t t t

*: ,

�

= +

= +
−

− −

−

1
1 0

1

1
0

α

α

� �� �
� �
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with the "working" score function �st tα0� � := s S at t t t t t tα α α0 0
1

0� � � �� �− −− .

As we want to solve (3.2), we have to iterate (WKFS), where the solution α ( )k

of the previous iteration is the starting vector for the next loop:

Iteratively weighted Kalman filter and smoother (IWKFS):

Initialization: Compute α0  = ( , ,..., )a a aT T T T0
0

1
0 0 ′ with (GKFS).

Set iteration index k = 0 .

Step 1: Starting with α k , compute α k+1 by application of (WKFS).

Step 2: If a convergence criterion is fulfilled: STOP,

else set k = k+1 and go to Step 1 .

(IWKFS) is a complete Fisher scoring algorithm that makes efficient use of the

block-tridiagonal form of U(α) as explicit inversion is avoided. At convergence,

we obtain the posterior mode smoother a = α ( )k . Moreover, the error covariances

Vt T  computed in (WKFS) at convergence are the curvatures of PL(α) at α = a, i.e.

the diagonal blocks of U a( )−1 , cf. Fahrmeir and Kaufmann (1991), and thus we do

not need extra computational effort to get them. This is a very convenient result

for hyperparameter estimation as will be seen in the next subsection. The

iterative process is suitably initialized with (GKFS) since it does not require a

starting vector α0 .

The estimation approach can be easily extended to longitudinal data. Due to the

conditional independence of individual responses yit within yt , the log-likelihood

l(α ) in (3.3) is now the sum

l(α ) = ( )ln *p y yit t t
i

n

t

T
α −

==
∑∑ 1

11
 = ( )lit t

i

n

t

T
α

==
∑∑

11

of individual log-likelihood contributions, and score functions and information

matrices are also sums of individual contributions, i.e.

( )st tα  = ( )sit t
i

n
α

=
∑

1
, ( )St tα  = ( )Sit t

i

n
α

=
∑

1
,
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with sit , Sit as in (3.4), (3.6), with additional index i.

3.2.  Estimation of hyperparameters

In the following we outline two methods for data-driven hyperparameter

estimation. One way is to estimate by an EM-type algorithm, similarly as for

linear Gaussian dynamic models and as already suggested in Fahrmeir (1992),

Fahrmeir and Goss (1992). The procedure for joint estimation of α, Q a0 0,  and Q =

Qt  (t = 1,...,T) can be summarized as follows:

EM-type algorithm:

1. Choose starting values Q Q a( ) ( ) ( ), ,0
0
0

0
0  and set iteration index p = 0 .

2. Smoothing:Compute a Vt T
p

t T
p( ) ( ),   (t = 1,...,T) by (GKFS) or (IWKFS), with un

known parameters replaced by their current estimates 

Q Q and ap p p( ) ( ) ( ), 0 0 .

3. EM step: Compute Q Q and ap p p( ) ( ) ( ),+ + +1
0

1
0

1  by

a ap
T
p

0
1

0
( ) ( )+ =  ,

Q Vp
T
p

0
1

0
( ) ( )+ = ,

Q
T

a Fa a Fa Vp
tT
p

t t T
p

tT
p

t t T
p

t T
p

t

T
( ) ( ) ( ) ( ) ( ) ( )+

− −
=

= − −
′
+

�
�
�∑1

1 1
1

1  � �

− − ′ ′ ′ + ′���−FB V V B F FV Ft t
p

tT
p

tT
p

t
p

t t t T
p

t
( ) ( ) ( ) ( ) ( )

1

with Bt
p( ) defined as in the fixed interval smoother.

4. If some termination criterion is reached: STOP, else set p = p+1 and go to

2.

A further way is to adopt the principle of cross-validation proposed by Kohn and

Ansley (1989) for linear state space models and mentioned in Hastie and

Tibshirani (1990), Fahrmeir and Tutz (1994) for static generalized additive

models, to the present context. For simplicity we consider univariate responses (q

= 1) and summarize the hyperparameters in the vector λ . Let a = ( ,..., )′ ′ ′a aT T T1  be

the (approximative) solution of (3.2) obtained with (GKFS) or (IWKFS) for a
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given vector λ . Extending the generalized cross-validation criterion from static to

dynamic generalized linear models, we define

GCV(λ ) = 
1

1

1 2
2

1T

y h Z a a

tr H T

t t tT t tT

t

T −

−

�

�
�
��

�

�
�
��=

∑
 ��   �

� �
Σ

λ

where Hλ  is the "smoother" or "hat" matrix. It can be obtained by the same

arguments as for static GLM's (see e.g. Fahrmeir and Tutz, 1994, ch.4): At

convergence, the Fisher scoring step (3.7) has the form

a Z W a Z K Z W a y a= ′ + ′−( ) ( )�! " � �1 ,

and the estimated linear predictor is

Za ZU a Z W a y a= ′−� � � �1
� ( )  .

Suppressing the information connected with the initial prior p(α0), the smoother

matrix Hλ  is therefore obtained by omitting the first row and column of

Z Z W a Z K Z W a′ + ′−( ) ( )! " 1 . As the diagonal blocks of ′ + −Z W a Z K( )! " 1 = U a� �−1 are

the approximate error covariance matrices Vt T   (t = 1,...,T), computed by (IWKFS)

at convergence, the diagonal blocks of Hλ  are Z V Z W at t T t t t T′ ( )   (t = 1,...,T).

Therefore

tr(Hλ ) = Z V Z W at t T t t t T
t

T

′
=
∑ � �

1

can be obtained from (IWKFS) without additional computational effort.

Unknown hyperparameters λ  are estimated by minimizing GCV(λ ) numerically.

3.3.  Approximate posterior mean analysis

In Subsection 3.1, the smoothing estimate a of the entire state vector α  is

defined and derived as the posterior mode of ( )p yTα *  and inverse information

matrices are used as approximate error covariance matrices. Experience with

simulated and real data sets indicate satisfactory approximation quality for

practical purposes. Simulation results as in Fahrmeir (1992) also provide some
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evidence that the posterior ( )p yTα *  is approximately Gaussian and, therefore, the

posterior mode and associated error covariance matrices are reasonable and

useful approximations to the posterior mean. In the following, we give an

additional informal argument for approximate posterior normality. It is based on

a Taylor expansion of the sampling log-likelihood l(α ) about the mode a of the

posterior, neglecting cubic and higher order terms, as used for Laplace’s

approximation (e.g. Tierney and Kadane, 1986; Breslow and Clayton, 1993).

Carrying out such an expansion, we obtain

l(α ) = l(a)+ ( ) ( ) ( ) ( )( )α μ− ′ ′ −−a Z D a a y aΣ 1 - ( ) ( )( )( )1
2

α α− ′ ′ + −a Z W a Z A a

+higher order terms.

The remainder term A is 0 for natural link functions and has expectation 0 for

general link functions. Omitting A and higher order terms and rearranging, we

get

l(α ) ≈  ( ) ( )( ){ }[ ] ( ) ( ) ( )( ){ }[ ]− − + −
′

− + −− −1
2

1 1Z Za D a y a W a Z Za D a y aα μ α μ +C

= ( )( ) ( ) ( )( )− − ′ −1
2

~ ~y a Z W a y a Zα α +C,

where C is independent of α , and ~y ( )a  = ( ) ( )( )Za D a y a+ −−1 μ . Thus, l(α ) is ap-

proximated by a Gaussian sampling log-likelihood

~
l (α ) = ( )( ) ( ) ( )( )− − ′ −1

2
~ ~y a Z W a y a Zα α +C,

with mean Zα , covariance matrix W ( )a  and observations ~y ( )a . Maximizing the

approximate penalized likelihood 
~
l (α )- ′α αK / 2  yields the solution

�a = ( )( ) ( ) ( )′ + ′−Z W a Z K Z W a y a1 ~ . (3.10)

Comparing with (3.7) and (3.9), we see that (3.10) corresponds to the solution of

(3.7) at convergence. It can be obtained by the linear Kalman smoother. Thus,

the posterior is (approximately) Gaussian, with mean �a (approximately) equal to

the mode.
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The accuracy of the approximation depends on the data situation and the

sample size. For longitudinal data the approximation can be justified

asymptotically for n→ ∞  and T fixed, with arguments as for the Laplace method

(Tierney and Kadane, 1986). The question of approximation quality becomes

more difficult for small n, in particular n = 1 as in the pure time series situation.

The simulation results in Subsection 4.1 indicate satisfactory behaviour even for

this sparse data situation. A rigorous asymptotic theory for T→ ∞  and small n

would be an interesting topic for further theoretical research.

4.  ILLUSTRATIVE APPLICATIONS

The time series of rainfall data in the first application has already been analyzed

in Kitagawa (1987) and with (GKFS) in Fahrmeir (1992), and is reanalyzed here

for comparison with (IWKFS). Based on this example, a simulation study has

been carried out to get some insight into estimation quality. In the second

application, we analyze a larger longitudinal data set with multicategorical,

ordinal responses from micro-economics.

4.1.  Binary rainfall data

The data are given by the number of occurences of rainfall in the Tokyo area for

each calendar day during the years 1983-1984. To obtain a smooth estimate of

the probability π t  of occurence of rainfall on calendar day t  (t = 1,...,366),

Kitagawa (1987) chose the following dynamic binomial logit model:

yt  ∼ 
B t February

B t
t

t

( , ), ( )

( , ), ,

1 60 29

2 60

π
π

=
≠

���
(4.1)

π α α αt t t th= = +( ) exp( ) exp( ) ,1	 


α α ξ ξt t t t+ = +1 , ∼N( , ),0 2σ   ξ0∼N a q( , )0 0 ,

so that π t  = P(rain on day t) is parametrized by α t . Up to a constant, the

corresponding penalized log-likelihood is
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PL( )α  = y e y et t
t
t

t
60 60

1
60

366

1 2 160α αα α− + + − +
=
≠

∑ln ln
,

� � � �� � -

 - 
1

2 2 1

2

1

366

σ
α αt t

t

− −
=
∑ � �  - 

1

2 0
0 0

2

q
aα −� �  .

Figure 1 shows corresponding smoothed estimates �π t th a= 366 �  based on (IWKFS)

together with the data points. The random walk variance σ2 was estimated by

the EM-type algorithm and (GCV). Both methods provide the same estimate �σ2 =

0.032 . In this example (GKFS) and (IWKFS) lead to more or less the same

pattern for the estimated probability of rainfall for calendar days.

Figure 1 : Tokyo rainfall data, computed with (IWKFS) and RW1.

If we take the second order random walk as transition model, i.e.

α t+1 = 
2 1
1 0

−#
$%

&
'( +α ξt t  ,  ξt∼N Q( , )0  , Q

q
= #
$%

&
'(

0
0 0

,

then Figure 2 shows the (GCV)-function dependent on q, computed with

(IWKFS). We can observe three local minima, approximately at

3 10 3 10 0 0087 5⋅ ⋅− −, .and  .
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Figure 2 : Tokyo rainfall data. Values of (GCV) dependent on q, computed with (IWKFS) and 
RW2.

The corresponding estimates �π t  are given in Figure 3. Dependent on the starting

value of q, the EM-type algorithm yields the same estimates.

Figure 3 : Tokyo rainfall data, computed with (IWKFS), RW2 and different smoothing 
parameters q.

To provide some insight into estimation properties, we carried out the following

Monte-Carlo experiment: Taking the estimated probabilities �πt  of Figure 1 as
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the „true“ probabilities πt  for rainfall on day t, 200 replications of binomial time

series { yt
b }, b = 1,...,B=200, were generated according to the model (4.1). For each

replication { yt
b } smoothed estimates at

b  and πt
b  = h( at

b), together with

approximate error variances Vt
b  for at

b  and transformed variances ( )σt
b 2

 for πt
b ,

were computed by (IWKFS) combined with the EM-type algorithm.

Figure 4 : Monte-Carlo experiment, ——— „true“ probabilities πt , − − − −  estimated 

probabilities πt
1  (with ......... 90% confidence band) and the time series { yt

1}.
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Figure 5 : Monte-Carlo experiment, ——— empirical mean ~πt  (with ......... 90% confidence 

band) and − − − −  „true“ probabilities

Figure 4 displays the „true“ probabilities πt  of Figure 1 (solid line), the time

series { yt
1} from the first replicate, and the estimated probabilities πt

1 together

with pointwise 90% confidence bands πt
1 ±164 1. σt . In Figure 5, the „true“ curve is

compared to the empirical mean ~πt  = ( )1 200 πt
b∑  of the 200 smoothed estimates

πt
b , together with corresponding pointwise 90% confidence intervals. Both

figures indicate that bias is associated with high curvature and that there is a

tendency of oversmoothing. However, on the average, the „true“ curve is well

covered by the pointwise confidence bands. This can also be seen from Figure 6,

where the pointwise coverages out of the 200 replicates are plotted.
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Figure 6 : Monte-Carlo experiment, ——— nominal value 90%. The points are pointwise 
coverages of 90% intervals.

There is again clear evidence that low coverage is associated with high

curvature, which is in agreement with the simulations of Gu (1992) in the

context of non-Gaussian spline smoothing. The average coverage probability,

however, is about 95%. This indicates that approximate error variances ( )σt
b 2

obtained from (IWKFS) tend to be larger than exact error variances, at least in

this example. This is also confirmed by comparing the mean ~σt
2  =

( )1 200
2

σt
b∑⎧⎨⎩

⎫
⎬
⎭

 of the ( )σt
b 2

 to the empirical variances ( )π πt
b

t−∑ ~ 2
200

obtained from the smoothed estimates out of the 200 replicates in Figure 7.
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Figure 7 : Monte-Carlo experiment, ——— empirical variances ( )π πt
b

t−∑ ~ 2
200  and 

− − − −  the mean of the transformed variances ~σt
2

4.2.  Business test

The ordinal longitudinal data in this application are a subset of monthly

business microdata collected by the IFO institute in Munich. The questionnaire

contains questions on the tendency of successive change of realizations, plans

and expectations of variables like production, orders in hand, demand, etc.

Answers are categorical, most of them trichotomous and ordinal with categories

like "increase" (+), "decrease" (-) and "no change" (=). Currently, several thousand

firms from various industry branches participate in this survey on a voluntary

basis. We analyze data collected in the industrial branch "Steine und Erden", for

the period of January 1980 to December 1990. Firms in this branch manufacture

initial products for the building trade industry.

The response variable is formed by the production plans Pit  of each firm i  (i =

1,...,55), for the t-th month. Its conditional distribution is supposed to depend on

the covariates "expected business condition" Dit , "orders in hand compared to the
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previous month" Oit  and "production plans of the previous month" Pi t, −1. No

interaction effects are included.

In the following each trichotomous variable is described by two (q=2) dummy

variables with (-) as the reference category. Thus (1,0), (0,1) and (0,0) stand for

the responses (+), (=) and (-), respectively. The relevant dummies for (+) and (=)

are abbreviated by P Pit it
+ =,  etc. Then a cumulative logit model with stochastic

trends τ1t , τ2t , yearly seasonal components γ1t , γ 2t  for both thresholds and global

covariate effects β β βt t t= ′( ,..., )1 6  is specified by

pr{ } ( )P h P P D D O Oit t t t i t t i t t it t it t it t it= + = + + + + + + +−
+

−
= + = + =( ) , ,τ γ β β β β β β1 1 1 1 2 1 3 4 5 6

pr{ } ( )P or h P P D D O Oit t t t i t t i t t it t it t it t it= + = = + + + + + + +−
+

−
= + = + =( ) ( ) , ,τ γ β β β β β β2 2 1 1 2 1 3 4 5 6

,

where pr Pit = +( )	 
 and pr P orit = + =( ) ( )	 
 stand for the probability of increasing

and nondecreasing production plans, and h(⋅) is the logistic distribution function.

Trends τ1t , τ2t  and covariate effects β1t ,...,β6t  are modelled by independent

random walks of first order, while seasonal components obey autoregressive

transition models of order 12, i.e.

γ γ γit i t i t+ + +− −, ,...1 11 = ϖit , ϖit∼ ( )N 0 2,σϖ , i = 1,...,55 .

Unknown hyperparameters were estimated by the EM-type algorithm.
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Figure 9a:Business test data. Estimated seasonal component of first threshold parameter, 
computed with (IWKFS).
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Figure 9b:Business test data. Estimated seasonal component of second threshold parameter, 
computed with (IWKFS).

Figure 8 gives the estimated trend parameters obtained from (IWKFS). The two

trends are comparably smooth and stable, though slightly time-varying. Both

seasonal components (Figures 9a and 9b) have a rather distinct pattern with

clear at the beginning of the year and corresponding lows in autumn, coinciding

with beginning of the new season in building trade industry after less busy

months during winter. For the seasonal component γ1t , an additional local peak

appears about July to August, indicating plans for increased production after

summer vacations. Figure 10 displays the smoothed estimates of the covariate

parameters.
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Figure 10:Business test data. Covariate effects, computed with (IWKFS).

Figure 11:Business test data. Estimated D+ -effect with pointwise confidence bands, computed
with (IWKFS).

Compared to the remaining effects, the parameter corresponding to the increase

category D+  of expected development of business has a remarkable temporal

variation. Figure 11 exhibits a clear decline to a minimum at the beginning, and
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a distinct increase period coincides with the first months of the new German

government in autumn 1982, ending up with the elections to the German

parliament in 1983. The growing positive effect of a positive state of business to

the "increase" category of production plans indicates positive reactions of firms to

the change of government.

5.  GENERAL NON-GAUSSIAN DYNAMIC REGRESSION

In Section 2, smoothing algorithms have been derived for state space models with

observation densities from the exponential family. This leads to mathematically

convenient expressions, but this restriction can be removed by admitting general

non-exponential family densities with piecewise continuous first and second

derivatives. A broad class of non-Gaussian models is obtained if we assume that

the observation density for yt tα  has the general form p yt t t tη η α= � �� �, where ηt

is any parameter of specific interest, for example the mean, and is parameterized

as a possibly nonlinear function of the state vector α t . An important subclass are

robust models, where the errors εt  in the observation equation yt=η α εt t t( ) +

come from a heavy-tailed distribution pε , e.g. a Student distribution. Then

p yt t t tη η α= � �� � is given by p yt t tε η α( ( ))− . The incorporation of such a heavy-tail

error distribution makes the model robust against additive outliers. Let

lt t t tyη α� �� �;  denote the corresponding log-likelihood contribution. The score

function contribution is then

s M gt t t t t tα α α� � � � � �= ′ ⋅  ,

where ′ =Mt t t tα ∂η ∂α� � , gt t t tα ∂ ∂η� � = l  and

S M W Mt t t t t t t tα α α α� � � � � � � �= ′ ,

with W E g gt t t t t tα α α� � � � � �� �= ′  is the expected information matrix contribution.

Defining the augmented vector

g( )α  = ′ − ′ ′ ′ ′
a g gT T0 0 1 1α α α, ( ),..., ( )	 
 ,
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the block-diagonal matrix

M(α) = diag I M MT T, ( ),..., ( )1 1α α	 


and the block-diagonal weight matrix

W(α) = diag Q W WT T0
1

1 1
− , ( ),..., ( )α α� �,

we obtain, similarly as in Section 3, the (augmented) score vector

s( )α  = ′M g( ) ( )α α

and the expected information matrix

S( )α  = ′M W M( ) ( ) ( )α α α .

Proceeding as in Section 3, a Fisher scoring step from α0 to α1 can be written as

α1 = ′ + ′−
M W M K M W y0 0 0

1

0 0
0� � 
 �� α , (5.1)

where M0  and W0 are M(α) and W(α) evaluated at α0, and

� ( )y α0  = W g M0
1

0 0
0− +( )α α

is the working observation.

Comparing with (3.9), it is seen that a Fisher scoring step can be carried out by

(WKFS), identifying Zt  with M t0,  and Wt ( )α0  with W t0, .
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